2x+5=21
a)|-x+2/5|+1/2=3,5 b)21/5+3:|x/4-2/3|=6
c)7,5-3|5-2x|=-4,5 d)1/3-|5/4-2x|=1/4
e)21/5+3:|x/4-2/3|=6
a)|-x+2/5|+1/2=3,5 b)21/5+3:|x/4-2/3|=6
c)7,5-3|5-2x|=-4,5 d)1/3-|5/4-2x|=1/4
e)21/5+3:|x/4-2/3|=6
a: Ta có: \(\left|\dfrac{2}{5}-x\right|+\dfrac{1}{2}=3.5\)
\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=3\\x-\dfrac{2}{5}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{5}\\x=-\dfrac{13}{5}\end{matrix}\right.\)
b: Ta có: \(\dfrac{21}{5}+3:\left|\dfrac{x}{4}-\dfrac{2}{3}\right|=6\)
\(\Leftrightarrow3:\left|\dfrac{1}{4}x-\dfrac{2}{3}\right|=6-\dfrac{21}{5}=\dfrac{9}{5}\)
\(\Leftrightarrow\left|\dfrac{1}{4}x-\dfrac{2}{3}\right|=\dfrac{5}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{4}x-\dfrac{2}{3}=\dfrac{5}{3}\\\dfrac{1}{4}x-\dfrac{2}{3}=-\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{4}x=\dfrac{7}{3}\\\dfrac{1}{4}x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{28}{3}\\x=-4\end{matrix}\right.\)
tìm x
a, | 5/4x - 7/2 | - | 5/8x + 3/5 | = 0
b, 21/5 + 3 : | x/4 - 2/3 | = 6
c,| 9 + x | = 2x
d, | 2x - 3 | + x = 21
e, | 7 - 2x | + 7 = 2x
f, | -x + 2/5 | + 1/2 = 3,5
G, | 3x - 4 | + 4 = 3x
a) | 5/4x -7/2| - | 5/8x + 3/5| = 0
|5/4x - 7/2| = | 5/8x + 3/5|
TH1: 5/4x - 7/2 = 5/8x + 3/5
=> 5/4x - 5/8x = 3/5 +7/2
5/8x = 41/10
x = 41/10:5/8
x = 164/25
TH2: 5/4x - 7/2 = -5/8x - 3/5
=> 5/4x + 5/8x = -3/5 +7/2
15/8x = 29/10
x = 29/10 : 15/8
x = 116/75
KL: x = 164/25 hoặc x = 116/75
các bài cn lại b lm tương tự nha! h lm dài lắm!
( 5x +8 ) - ( 2x-15) +21 = 2x -5
\(\left(5x+8\right)-\left(2x-15\right)+21=2x-5\)
\(\Leftrightarrow5x+8-2x+15+21=2x-5\)
\(\Leftrightarrow\left(5x-2x\right)+\left(8+15+21\right)=2x-5\)
\(\Leftrightarrow3x+44=2x-5\)
\(\Leftrightarrow3x-2x=-44-5\)
\(\Leftrightarrow x=-49\)
~ rất vui vì giúp đc bn ~
tìm x
a, | 5/4x - 7/2 | - | 5/8x + 3/5 | = 0
b, 21/5 + 3 : | x/4 - 2/3 | = 6
c,| 9 + x | = 2x
d, | 2x - 3 | + x = 21
e, | 7 - 2x | + 7 = 2x
f, | -x + 2/5 | + 1/2 = 3,5
G, | 3x - 4 | + 4 = 3x
a: =>|5/4x-7/2|=|5/8x+3/5|
=>5/4x-7/2=5/8x+3/5 hoặc 5/4x-7/2=-5/8x-3/5
=>5/8x=41/10 hoặc 15/8x=29/10
=>x=164/25 hoặc x=116/75
b: =>3:|x/4-2/3|=6-21/5=9/5
=>|1/4x-2/3|=5/3
=>1/4x-2/3=5/3 hoặc 1/4x-2/3=-5/3
=>1/4x=7/3 hoặc 1/4x=-1
=>x=28/3 hoặc x=-4
c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(2x-x-9\right)\left(2x+x+9\right)=0\end{matrix}\right.\Leftrightarrow x=9\)
e: =>|2x-7|=2x-7
=>2x-7>=0
=>x>=7/2
\(\dfrac{2x+19}{21}-\dfrac{2x+17}{23}=\dfrac{2x+7}{33}-\dfrac{2x+5}{35}\) tìm x
\(\dfrac{2x+19}{21}-\dfrac{2x+17}{23}=\dfrac{2x+7}{33}-\dfrac{2x+5}{35}\)
\(\Rightarrow\dfrac{2x+19}{21}-\dfrac{2x+17}{23}-\dfrac{2x+7}{33}+\dfrac{2x+5}{35}=0\)
\(\Rightarrow\left(\dfrac{2x+19}{21}+1\right)-\left(\dfrac{2x+17}{23}+1\right)-\left(\dfrac{2x+7}{33}+1\right)+\left(\dfrac{2x+5}{35}+1\right)=0\)
\(\Rightarrow\dfrac{2x+40}{21}-\dfrac{2x+40}{23}-\dfrac{2x+40}{33}+\dfrac{2x+40}{35}=0\)
\(\Rightarrow\left(2x+40\right)\left(\dfrac{1}{21}-\dfrac{1}{23}-\dfrac{1}{33}+\dfrac{1}{35}\right)=0\)
\(\Rightarrow2x+40=0\Rightarrow x=-20\)( do \(\dfrac{1}{21}-\dfrac{1}{23}-\dfrac{1}{33}+\dfrac{1}{35}>0\))
Ta có: \(\dfrac{2x+19}{21}-\dfrac{2x+17}{23}=\dfrac{2x+7}{33}-\dfrac{2x+5}{35}\)
\(\Leftrightarrow\left(2x+40\right)\left(\dfrac{1}{21}-\dfrac{1}{23}-\dfrac{1}{33}+\dfrac{1}{35}\right)=0\)
\(\Leftrightarrow2x+40=0\)
hay x=-20
Tìm x: a) 2x - 5x = -1/21 ÷ -5/84 _________ b) 1/2x - 2/3x + 1/5 = -3/4
a: =>-3x=1/21*84/5=4/5
=>x=-4/5:3=-4/15
b: =>-1/6x=-3/4-1/5=-19/20
=>x=19/20:1/6=19/20*6=57/10
#\(N\)
`a,`\(2x-5x=-\dfrac{1}{21}\div-\dfrac{5}{84}\)
\(2x-5x=\dfrac{4}{5}\)
\(x.\left(2-5\right)=\dfrac{4}{5}\)
\(-3x=\dfrac{4}{5}\)
\(x=\dfrac{4}{5}\div-3\)
\(x=-\dfrac{4}{15}\)
`b,` \(\dfrac{1}{2}x-\dfrac{2}{3}x+\dfrac{1}{5}=-\dfrac{3}{4}\)
\(\dfrac{1}{2}x-\dfrac{2}{3}x=-\dfrac{3}{4}-\dfrac{1}{5}\)
\(\dfrac{1}{2}x-\dfrac{2}{3}x=-\dfrac{19}{20}\)
\(x.\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=-\dfrac{19}{20}\)
\(x.-\dfrac{1}{6}=-\dfrac{19}{20}\)
\(x=-\dfrac{19}{20}\div-\dfrac{1}{6}\)
\(x=\dfrac{57}{10}\)
tìm x biết : 2x*(x-5)+(2x-1)*(x-3)=21
79-(2x+5)=21
Tìm x biết
f) \(\frac{2x-1}{21}\)=\(\frac{3}{2x+1}\)
g)\(\frac{2x-1}{21}=\frac{3}{2x+1}\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\)
f) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)( ĐKXĐ : \(x\ne-\frac{1}{2}\))
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=21\cdot3\)
\(\Leftrightarrow4x^2-1=63\)
\(\Leftrightarrow4x^2=64\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow x^2=\left(\pm4\right)^2\)
\(\Leftrightarrow x=\pm4\)(tmđk)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\)( ĐKXĐ : \(x\ne-1\))
\(\Leftrightarrow\left(10x+5\right)\left(x+1\right)=6\cdot5\)
\(\Leftrightarrow10x^2+15x+5=30\)
\(\Leftrightarrow10x^2+15x+5-30=0\)
\(\Leftrightarrow10x^2+15x-25=0\)
\(\Leftrightarrow5\left(2x^2+3x-5\right)=0\)
\(\Leftrightarrow2x^2+3x-5=0\)
\(\Leftrightarrow2x^2-2x+5x-5=0\)
\(\Leftrightarrow2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+5\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)(tmđk)
f) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=21.3\)
\(\Leftrightarrow4x^2-1=63\)
\(\Leftrightarrow4x^2=64\)
\(\Leftrightarrow x^2=16\)\(\Leftrightarrow x^2=4^2\)\(\Leftrightarrow x=4\)
Vậy \(x=4\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\)
\(\Leftrightarrow\left(10x+5\right)\left(x+1\right)=5.6\)
\(\Leftrightarrow5\left(2x+1\right)\left(x+1\right)=30\)
\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)=6\)
\(\Leftrightarrow2x^2+3x+1=6\)
\(\Leftrightarrow2x^2+3x-5=0\)
\(\Leftrightarrow\left(2x^2-2x\right)+\left(5x-5\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\2x=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-5}{2}\end{cases}}\)
Vậy \(x\in\left\{\frac{-5}{2};1\right\}\)
\(\frac{2x-1}{21}=\frac{3}{2x+1}\)
=> (2x - 1)(2x + 1) = 63 (1)
Đặt 2x = t
Khi đó (1) <=> (t - 1)(t + 1) = 63
=> t2 + t - t - 1 = 63
=> t2 - 1 = 63
=> t2 = 64
=> t = \(\pm\)8
Khi t = 8
=> 2x = 8
=> x = 4
Khi t = -8
=> 2x = -8
=> x = -4
Vậy \(x\in\left\{4;-4\right\}\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\)
=> (10x + 5)(x + 1) = 6.5
=> 5(2x + 1)(x + 1) = 30
=> (2x + 1)(x + 1) = 6
=> 2x2 + 2x + x + 1 = 6
=> 2x2 + 3x + 1 = 6
=>2x2 + 3x - 5 = 0
=> 2x2 - 2x + 5x - 5 = 0
=> 2x(x - 1) + 5(x - 1) = 0
=> (2x + 5)(x - 1) = 0
=> \(\orbr{\begin{cases}2x+5=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2,5\\x=1\end{cases}}\)
Vậy \(x\in\left\{-2,5;1\right\}\)