\(9< 3^X\le243\left(X\in N\right)\)
\(9\le3^{X+1}\le1000\left(X\in N\right)\)
CM CÁC SỐ SAU ĐÂY LÀ SỐ CHÍNH PHƯƠNG
\(A=x^2+4x^4(x\in N)\)
\(B=y^2-12y+36\left(y\in N\right)\)
\(C=\left(x+1\right).\left(x+3\right).\left(x+4\right).\left(x+6\right)+9\)
\(A=x^2+4x^4\)
\(\Rightarrow A=\left(2x^2\right)^2+4x^3+\left(x\right)^2-4x^3\)
\(\Rightarrow\left(2x^2+x\right)^2-4x^3\)
=> Ko là số chính phương
\(B=y^2-12y+36\)
\(B=y^2-2.6y+6^2\)
\(\Rightarrow B=\left(y-6\right)^2\)
=> Là số chính phương
1 Tìm số dư khi chia A ,B cho 2 biết
A=\(\left(4^n+6^n+8^n+10^n\right)-\left(3^n+5^n+7^n+9^n\right)\left(n\in N\right)\)
B=\(1995^n+1996^n+1997^n\left(n\in N\right)\)
2.Tìm chữ số tận cùng của \(9^{9^{2000}}\)
b.tìm 3 chứ số tận cùng của \(2008^{100}\)
3.tìm (x,y)thõa mãn:\(\left(\frac{2x-5}{9}\right)^{2016}+\left(\frac{3y+0,4}{3}\right)^{2012}=0\)
b,\(x\left(x+y\right)=\frac{1}{48}\) và \(y\left(x+y\right)=\frac{1}{24}\)
Tìm tất cả các tập hợp con của tập hợp:
a) A = \(\left\{a,b\right\}\)
b) B = \(\left\{1,2,3\right\}\)
c) C = \(\left\{x\in N/x\le3\right\}\)
d) D = \(\left\{x\in Z/\left(x-1\right)\left(2x^2+5x+2\right)=0\right\}\)
a/ \(\left\{a\right\};\left\{b\right\};\left\{a;b\right\};\varnothing\)
b/ \(\left\{1\right\};\left\{2\right\};\left\{3\right\};\left\{1;2\right\};\left\{1;3\right\};\left\{2;3\right\};\left\{1;2;3\right\};\varnothing\)
c/ \(\left\{0\right\};\left\{1\right\};\left\{2\right\};\left\{3\right\};\left\{0;1\right\};\left\{0;2\right\};\left\{0;3\right\};\left\{1;2\right\};\left\{1;3\right\};\left\{2;3\right\};\left\{0;1;2\right\};\left\{1;2;3\right\};\left\{0;2;3\right\};\left\{0;1;3\right\};\left\{0;1;2;3\right\};\varnothing\)
d/ \(\left\{1\right\};\left\{-2\right\};\left\{1;-2\right\};\varnothing\)
1. Tìm x, biết:
a) \(\left(x-\frac{3}{4}\right)^2=0\)
b) \(\left(x+\frac{1}{2}\right)^2=\frac{9}{64}\)
c) \(\frac{\left(-2\right)^x}{16}=-8\)
2. Tính:
\(\frac{6^3.12^4}{4^7.9^5}\)
3. Tìm \(x\in N\), biết:
\(3^2.81\le3^x\le27.243\)
1. Tìm x, biết :
a. ( x - \(\frac{3}{4}\)) \(^2\)= 0
=> x - \(\frac{3}{4}\)= 0
=> x = 0 + \(\frac{3}{4}\)
=> x = \(\frac{3}{4}\)
b. ( x + \(\frac{1}{2}\)) \(^2\)= \(\frac{9}{64}\)
=> ( x + \(\frac{1}{2}\)) \(^2\)= ( \(\frac{3}{8}\)) \(^2\)
=> x + \(\frac{1}{2}\)= \(\frac{3}{8}\)
=> x = \(\frac{3}{8}\)- \(\frac{1}{2}\)
=> x = \(\frac{-1}{8}\)
c. \(\frac{\left(-2\right)^x}{16}=-8\)
=> \(\frac{\left(-2\right)^x}{16}=\frac{-8}{1}=\frac{-128}{16}\)
=> ( -2)\(^x\)= -128
=> ( -2 ) \(^x\)= ( -2) \(^7\)
=> x = 7
Cho các tập hợp sau A= \(\left\{x\in R|\left(x-2x^2\right)\left(x^2-3x+2\right)=0\right\}\) và B=\(\left\{n\in N|3< n\left(n+1\right)< 31\right\}\)
Tìm A \(\cap\) B
\(A=\left\{x\in R|\left(x-2x^2\right)\left(x^2-3x+2\right)=0\right\}\)
Giải phương trình sau :
\(\left(x-2x^2\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow x\left(1-2x\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-2x=0\\x-1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\\x=2\end{matrix}\right.\)
\(\Rightarrow A=\left\{0;\dfrac{1}{2};1;2\right\}\)
\(B=\left\{n\in N|3< n\left(n+1\right)< 31\right\}\)
Giải bất phương trình sau :
\(3< n\left(n+1\right)< 31\)
\(\Leftrightarrow\left\{{}\begin{matrix}n\left(n+1\right)>3\\n\left(n+1\right)< 31\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n^2+n-3>0\\n^2+n-31< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n< \dfrac{-1-\sqrt[]{13}}{2}\cup n>\dfrac{-1+\sqrt[]{13}}{2}\\\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1-\sqrt[]{13}}{2}\\\dfrac{-1+\sqrt[]{13}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)
Vậy \(B=\left(\dfrac{-1-5\sqrt[]{5}}{2};\dfrac{-1-\sqrt[]{13}}{2}\right)\cup\left(\dfrac{-1+\sqrt[]{13}}{2};\dfrac{-1+5\sqrt[]{5}}{2}\right)\)
\(\Rightarrow A\cap B=\left\{2\right\}\)
Tìm \(x\in N\) thỏa mãn
\(\left(x+2\right)\left(x+4\right)\left(x^2-9\right)=0\)
Vì trong biểu thức phải có 1 số =0 thì kết quả mới bằng 0
Nên bạn xét từng trường hơp nó bằng 0 nha
mk ko bt trình bày đầy đủ nên chỉ bt vậy thui
tik mk nha
\(\left(x+2\right)\left(x+4\right)\left(x^2-9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\\x^2-9=0\Rightarrow x^2=9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\\\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy................
Vì \(x\in N\) nên x>=0
\(\Rightarrow x+2>=2>0\)
\(x+4>=4>0\)
\(x+3>=3>0\)
Do đó \(\left(x+2\right)\left(x+4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(x-3\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
KL: x = 3
1. Cho \(x,y,z\in\left(0,1\right)\) và \(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\). Cmr: \(x^2+y^2+z^2\ge\frac{3}{4}\)
2. \(\left\{{}\begin{matrix}x,y,z\ge0\\x^2+y^2+z^2+xyz=4\end{matrix}\right.\) Cmr: \(x+y+z\le3\)
3. \(x\ne-2y\). Min : \(P=\frac{\left(2x^2+13y^2-xy\right)^2-6xy+9}{\left(x+2y\right)^2}\)
Câu 1:
\(2xyz=1-\left(x+y+z\right)+xy+yz+zx\)
\(\Rightarrow xy+yz+zx=2xyz+\left(x+y+z\right)-1\)
\(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\)
\(=\left(x+y+z\right)^2-2\left(x+y+z\right)-4xyz+2\)
\(VT\ge\left(x+y+z\right)^2-2\left(x+y+z\right)-\frac{4}{27}\left(x+y+z\right)^3+2\)
\(VT\ge\frac{4}{27}\left[\frac{15}{4}-\left(x+y+z\right)\right]\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}\)
(Do \(0< x;y;z< 1\Rightarrow x+y+z< 3< \frac{15}{4}\))
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
Câu 2:
Từ điều kiện bài này có thể đặt ẩn phụ và AM-GM ra luôn kết quả, nhưng hơi rắc rối khi người ta hỏi từ đâu mà có cách đặt ẩn phụ như vậy, do đó ta giải trâu :D
\(x^2+y^2+z^2+xyz=4\)
\(\Leftrightarrow\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{4}+2\left(\frac{x}{2}.\frac{y}{z}.\frac{z}{2}\right)=1\)
\(\Leftrightarrow\frac{xy}{2z}.\frac{xz}{2y}+\frac{xy}{2z}.\frac{yz}{2x}+\frac{yz}{2x}.\frac{xz}{2y}+2\left(\frac{xy}{2z}.\frac{yz}{2x}.\frac{xy}{2y}\right)=1\)
Đặt \(\left(\frac{xy}{2z};\frac{zx}{2y};\frac{yz}{2x}\right)=\left(m;n;p\right)\Rightarrow mn+np+pn+2mnp=1\)
\(\Leftrightarrow2\left(n+1\right)\left(m+1\right)\left(p+1\right)=\left(n+1\right)\left(m+1\right)+\left(n+1\right)\left(p+1\right)+\left(m+1\right)\left(p+1\right)\)
\(\Leftrightarrow\frac{1}{n+1}+\frac{1}{m+1}+\frac{1}{p+1}=2\)
\(\Leftrightarrow1=\frac{n}{n+1}+\frac{m}{m+1}+\frac{p}{p+1}\ge\frac{\left(\sqrt{n}+\sqrt{m}+\sqrt{p}\right)^2}{m+n+p+3}\)
\(\Leftrightarrow m+m+p+2\left(\sqrt{mn}+\sqrt{np}+\sqrt{mp}\right)\le m+n+p+3\)
\(\Leftrightarrow\sqrt{mn}+\sqrt{np}+\sqrt{mp}\le\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\le\frac{3}{2}\Leftrightarrow x+y+z\le3\)
@Nguyễn Việt Lâm, @Akai Haruma, @tth_new
giúp em vs ạ! e cảm ơn nhiều!
Tìm x:
a/\(\left(5x+1\right)^2=\dfrac{36}{49}\)
b/\(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
c/\(\left(8x+1\right)^{2n+1}=5^{2n+1}\left(n\in N\right)\)
a: =>5x+1=6/7 hoặc 5x+1=-6/7
=>5x=-1/7 hoặc 5x=-13/7
=>x=-1/35 hoặc x=-13/35
b: =>x-2/9=4/9
=>x=6/9=2/3
c: =>8x+1=5
=>8x=4
hay x=1/2
\(\left(\frac{1}{27}\right)^x\) x 9x = 927 :81 \(\left(x\in N\right)\)