Những câu hỏi liên quan
H24
Xem chi tiết
H24
27 tháng 12 2020 lúc 16:30

Giúp vớiiiiii

Bình luận (0)
ND
Xem chi tiết
H24
16 tháng 5 2021 lúc 19:46

a)Ta có:
`\Delta'`
`=(m+1)^2-6m+4`
`=m^2+2m+1-6m+4`
`=m^2-4m+5`
`=(m-2)^2+1>=1>0(AA m)`
`=>`phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
Câu b đề không rõ :v

Bình luận (0)
TN
Xem chi tiết
NT
29 tháng 6 2023 lúc 14:05

1:

Δ=(2m-4)^2-4(m^2-3)

=4m^2-16m+16-4m^2+12=-16m+28

Để PT có hai nghiệm phân biệt thì -16m+28>0

=>-16m>-28

=>m<7/4

2: x1^2+x2^2=22

=>(x1+x2)^2-2x1x2=22

=>(2m-4)^2-2(m^2-3)=22

=>4m^2-16m+16-2m^2+6=22

=>2m^2-16m+22=22

=>2m^2-16m=0

=>m=0(nhận) hoặc m=8(loại)

3: A=x1^2+x2^2+2021

=2m^2-16m+2043

=2(m^2-8m+16)+2011

=2(m-4)^2+2011>=2011

Dấu = xảy ra khi m=4

Bình luận (0)
H24
Xem chi tiết
H24
5 tháng 5 2022 lúc 21:07

`a)` Thay `m = 1` vào ptr:

       `x^2 - 2 . 1 x + 1^2 - 1 + 1 = 0`

`<=>x^2 - 2x + 1 = 0`

`<=>(x - 1)^2=0`

`<=>x-1=0<=>x=1`

___________________________________________

`b)` Ptr có `2` nghiệm pb

`<=>\Delta' > 0`

`<=>b'^2-ac > 0`

`<=>(-m)^2-(m^2-m+1) > 0`

`<=>m^2-m^2+m-1 > 0`

`<=>m > 1`

Bình luận (17)
TA
Xem chi tiết
HP
6 tháng 1 2021 lúc 10:19

a, Phương trình có hai nghiệm phân biệt khi \(\Delta'=\left(m+1\right)^2-\left(4m^2-2m-2\right)=-3m^2+4m+3>0\)

\(\Leftrightarrow\dfrac{2-\sqrt{13}}{3}< m< \dfrac{2+\sqrt{13}}{3}\)

b, Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'>0\\2\left(m+1\right)>0\\4m^2-2m-2>0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
LN
Xem chi tiết
NT
2 tháng 8 2021 lúc 23:53

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bình luận (0)
NT
2 tháng 8 2021 lúc 23:54

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

Bình luận (0)
DD
Xem chi tiết
NL
7 tháng 5 2021 lúc 22:04

Pt đã cho có 2 nghiệm pb khi và chỉ khi:

\(\Delta'=\left(m+1\right)^2-\left(-2m-1\right)>0\)

\(\Leftrightarrow m^2+4m+2>0\)

\(\Rightarrow\left[{}\begin{matrix}m>-2+\sqrt{2}\\m< -2-\sqrt{2}\end{matrix}\right.\)

Bình luận (0)
DC
7 tháng 5 2021 lúc 22:13

undefined

Bình luận (0)
NL
Xem chi tiết
NT
20 tháng 1 2022 lúc 14:27

a:

\(\text{Δ}=\left(m-1\right)^2-4\left(-2m-1\right)\)

\(=m^2-2m+1+8m+4=m^2+6m+5\)

Để (1) vô nghiệm thì (m+1)(m+5)<0

hay -5<m<-1

Để (1) có nghiệm thì (m+1)(m+5)>=0

=>m>=-1 hoặc m<=-5 

Để (1) có hai nghiệm phân biệt thì (m+1)(m+5)>0

=>m>-1 hoặc m<-5

b: Để (1) có hai nghiệm phân biệt cùng dương thì

\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\\m>1\\m< -\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

Bình luận (0)
NL
20 tháng 1 2022 lúc 14:48

c. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=3\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)

\(\Leftrightarrow\left(m-1\right)^2+2\left(2m+1\right)=3\)

\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NT
17 tháng 1 2022 lúc 23:03

a: Thay m=2 vào pt, ta được:

\(x^2-2x+2=0\)

hay \(x\in\varnothing\)

b: \(\Leftrightarrow\left(2m-2\right)^2-4\left(m^2-3m+4\right)>0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+12m-16>0\)

=>4m>12

hay m>3

Bình luận (1)