Tìm góc nhọn x, biết :
\(2\sqrt{3}-3tgx=\sqrt{3}\)
Tìm số đo góc nhọn x:
a) \(4\sin x-1=1\)
b) \(2\sqrt{3}-3\tan x=\sqrt{3}\)
c) \(7\sin-3\cos\left(90^o-x\right)=2,5\)
d) \(\left(2\sin-\sqrt{2}\right)\left(4\cos-5\right)=0\)
e) \(\dfrac{1}{\cos^2x}-\tan x=1\)
f) \(\cos^2x-3\sin^2x=0,19\)
a) \(4sinx-1=1\Leftrightarrow4sinx=2\Leftrightarrow sinx=\dfrac{2}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow x=30^o\)
b) \(2\sqrt{3}-3tanx=\sqrt{3}\Leftrightarrow3tanx=2\sqrt{3}-\sqrt{3}=\sqrt{3}\Leftrightarrow tanx=\dfrac{\sqrt{3}}{3}\)
\(\Leftrightarrow x=30^o\)
c) \(7sinx-3cos\left(90^o-x\right)=2,5\Leftrightarrow7sinx-3sinx=2,5\Leftrightarrow4sinx=2,5\Leftrightarrow sinx=\dfrac{5}{8}\Leftrightarrow x=30^o41'\)
d)\(\left(2sin-\sqrt{2}\right)\left(4cos-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2sin-\sqrt{2}=0\\4cos-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2sin=\sqrt{2}\\4cos=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin=\dfrac{\sqrt{2}}{2}\\cos=\dfrac{5}{4}\left(loai\right)\end{matrix}\right.\)\(\Rightarrow x=45^o\)
Xin lỗi nãy đang làm thì bấm gửi, quên còn câu e, f nữa:"(
e) \(\dfrac{1}{cos^2x}-tanx=1\Leftrightarrow1+tan^2x-tanx-1=0\Leftrightarrow tan^2x-tanx=0\Leftrightarrow tanx\left(tanx-1\right)=0\Rightarrow tanx-1=0\Leftrightarrow tanx=1\Leftrightarrow x=45^o\)
f) \(cos^2x-3sin^2x=0,19\Leftrightarrow1-sin^2x-3sin^2x=0,19\Leftrightarrow1-4sin^2x=0,19\Leftrightarrow4sin^2x=0,81\Leftrightarrow sin^2x=\dfrac{81}{400}\Leftrightarrow sinx=\dfrac{9}{20}\Leftrightarrow x=26^o44'\)
a/ Không sử dụng máy tính .Cho góc nhọn α , biết sinα = \(\dfrac{\sqrt{3}}{2}\) . Hãy tính cosα ; tanα ; cotα.
b/ Không sử dụng máy tính .Cho góc nhọn α , biết cosα = \(\dfrac{\sqrt{5}}{7}\) . Hãy tính cosα ; tanα ; cotα.
a: \(\cos\alpha=\dfrac{1}{2}\)
\(\tan\alpha=\sqrt{3}\)
\(\cot\alpha=\dfrac{\sqrt{3}}{3}\)
Tìm góc nhọn a biết sin a . cos a =\(\frac{\sqrt{3}}{4}\)
Góc nhọn a = 30 độ hoặc 60 độ
Tk mk nha
Cho ΔABC có ba góc nhọn biết AB=4cm và gócC=300 .Đường tròn tâm O đường kính AB cắt các cạnh CA,CB lần lượt tại F và E.Độ dài đoạn thẳng FE bằng
A.2\(\sqrt{3}\)cm B.\(4\sqrt{3}cm\) C.\(\sqrt{3}cm\) D.4cm
Câu 2: Tìm x biết:
a. \(\sqrt{x-1}=2\)
b. \(\sqrt{3x+1}=\sqrt{4x-3}\)
c. \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
d. \(\sqrt{x^2-4x+4}=\sqrt{6+2\sqrt{5}}\)
\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)
\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)
Tìm `x` để `AB. B > 3/2`, biết:
\(A=\dfrac{3+\sqrt{x}}{\sqrt{x}}\)
\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
Tìm \(x\) để \(A.B>\dfrac{3}{2}?\)
\(ĐK:x>0;\\ A.B\\ =\dfrac{3+\sqrt{x}}{\sqrt{x}}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}}\\ =1+\dfrac{1}{\sqrt{x}}\\ A.B>\dfrac{3}{2}\\ \Leftrightarrow1+\dfrac{1}{\sqrt{x}}>\dfrac{3}{2}\\ \Leftrightarrow\dfrac{1}{\sqrt{x}}>\dfrac{3}{2}-1\\ \Leftrightarrow\dfrac{1}{\sqrt{x}}>\dfrac{1}{2}\\ \Leftrightarrow\sqrt{x}< 2\\ \Leftrightarrow0< x< 4\)
Vậy \(0< x< 4\) thì \(A.B>\dfrac{3}{2}\)
Cho: \(A=\dfrac{3\sqrt{x}}{-x-5\sqrt{x}-1}\)
a) Tìm x biết \(A=\dfrac{2}{3}\)
b) Tìm A biết \(x=7-2\sqrt{6}\)
c) Tìm GTNN của A
b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)
\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)
\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)
Cho tam giác ABC nhọn có: góc A bằng 60 độ; BC= \(\sqrt{\sqrt{3}-1}\)cm; diện tích tam giác ABC bằng \(\frac{\sqrt{3}}{6}\). Sin(B)+Sin(C)=\(\frac{\sqrt{6}+3\sqrt{2}}{4}\).Tính các góc B và C
Tìm x biết :
a) \(\sqrt{9x}+\sqrt{x}=12\)
b) \(\dfrac{\sqrt{x}+3}{4}=\dfrac{\sqrt{x}}{3}\)
c) \(\dfrac{5\sqrt{x}-x}{\sqrt{x}}=2\)
Nếu chưa quen giải toán căn thức, em tìm ĐKXĐ cho x, rồi đặt \(\sqrt{x}=t\ge0\Rightarrow x=t^2\) rồi thế vào giải là nó ra 1 pt bình thường theo biến t thôi
a) Ta có: \(\sqrt{9x}+\sqrt{x}=12\)
\(\Leftrightarrow4\sqrt{x}=12\)
\(\Leftrightarrow\sqrt{x}=3\)
hay x=9
b) Ta có: \(\dfrac{\sqrt{x}+3}{4}=\dfrac{\sqrt{x}}{3}\)
\(\Leftrightarrow4\sqrt{x}=3\sqrt{x}+9\)
\(\Leftrightarrow\sqrt{x}=9\)
hay x=81
c) Ta có: \(\dfrac{5\sqrt{x}-x}{\sqrt{x}}=2\)
\(\Leftrightarrow5\sqrt{x}-x=2\sqrt{x}\)
\(\Leftrightarrow x-5\sqrt{x}+2\sqrt{x}=0\)
\(\Leftrightarrow x-3\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-3\right)=0\)
hay x=9