Những câu hỏi liên quan
DT
Xem chi tiết
NT
17 tháng 4 2021 lúc 22:27

\(\left(\dfrac{\dfrac{x}{x+1}}{\dfrac{x^2}{x^2+x+1}}-\dfrac{2x+1}{x^2+x}\right)\dfrac{x^2-1}{x-1}\)ĐK : \(x\ne\pm1\)

\(=\left(\dfrac{x}{x+1}.\dfrac{x^2+x+1}{x^2}-\dfrac{2x+1}{x\left(x+1\right)}\right)\left(x+1\right)=\left(\dfrac{x^2+x-1}{x^2+x}-\dfrac{2x+1}{x\left(x+1\right)}\right)\left(x+1\right)\)

\(=\left(\dfrac{x^2+x-1-2x-1}{x\left(x+1\right)}\right)\left(x+1\right)=\dfrac{x^2-3x-2}{x}\)

Bình luận (0)
NT
17 tháng 4 2021 lúc 22:32

à xin lỗi mình nhầm dòng cuối 

\(=\dfrac{x^2-x-2}{x}=\dfrac{\left(x+1\right)\left(x-2\right)}{x}\)

Để biểu thức trên nhận giá trị dương khi 

\(\dfrac{\left(x+1\right)\left(x-2\right)}{x}>0\)bạn tự xét TH cả tử và mẫu nhé, mình đánh trên này bị lỗi 

 

 

Bình luận (0)
AH
Xem chi tiết
MD
3 tháng 8 2023 lúc 17:47

KO

 

Bình luận (0)
PT
3 tháng 8 2023 lúc 17:50

Để rút gọn biểu thức, ta sẽ thực hiện các phép tính và kết hợp các thành phần tương tự: P(2x-1).4x^2 + 2x + 1 + (x+1)x^2 - x + 1 = P(8x^3 - 4x^2) + 2x + 1 + x^3 + x^2 - x + 1 = P(8x^3) - P(4x^2) + x^3 + (2x-x) +(1+1) = **8Px^3 - 4Px^2**+ x^3 **+ x**+ **2** Vậy biểu thức đã được rút gọn thành: **8Px³ - 4Px²+x³+x+2**

Bình luận (0)
PT
3 tháng 8 2023 lúc 17:50

ok bạn

Bình luận (0)
TQ
Xem chi tiết
AH
6 tháng 11 2023 lúc 18:20

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.

Bình luận (0)
NT
6 tháng 11 2023 lúc 18:22

a: \(P=\dfrac{1}{x+1}-\dfrac{x^3-x}{x^2+1}\cdot\dfrac{1}{x^2+2x+1}-\dfrac{1}{x^2-1}\)

\(=\dfrac{1}{x+1}-\dfrac{x\left(x^2-1\right)}{x^2+1}\cdot\dfrac{1}{\left(x+1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{x+1}-\dfrac{x\left(x-1\right)}{\left(x^2+1\right)\left(x+1\right)}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-1-1}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\dfrac{x-2}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-2\right)\left(x^2+1\right)-x\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}\)

\(=\dfrac{x^3+x-2x^2-2x-x^3+2x^2-x}{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}\)

\(=\dfrac{-2x}{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}\)

Bình luận (0)
HH
Xem chi tiết
NT
24 tháng 7 2021 lúc 20:03

a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{x^2-x-2}{x^2}\right)\)

\(=\dfrac{x\left(x-2\right)^2+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x^2-x-2\right)}{x^2}\)

\(=\dfrac{x\left[x^2-4x+4+4x\right]}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x+1}{2x}\)

b) Thay \(x=\dfrac{1}{2}\) vào P, ta được:

\(P=\dfrac{1}{2}+1=\dfrac{3}{2}\)

Bình luận (0)
LP
Xem chi tiết
MN
20 tháng 2 2020 lúc 12:54

\(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne-\frac{1}{2}\end{cases}}\)

a) \(A=\left(\frac{1}{x-1}+\frac{x}{x^3-1}\cdot\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)

\(\Leftrightarrow A=\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{\left(x+1\right)^2}\)

\(\Leftrightarrow A=\frac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(x+1\right)^2}{2x+1}\)

\(\Leftrightarrow A=\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(2x+1\right)}\)

\(\Leftrightarrow A=\frac{x+1}{x-1}\)

b) Thay \(x=\frac{1}{2}\)vào A, ta được :

\(A=\frac{\frac{1}{2}+1}{\frac{1}{2}-1}=\frac{\frac{3}{2}}{-\frac{1}{2}}=-3\)

Bình luận (0)
 Khách vãng lai đã xóa
TC
Xem chi tiết
NB
7 tháng 12 2020 lúc 19:21

bạn viết thế này khó nhìn quá

Bình luận (0)
 Khách vãng lai đã xóa
LT
26 tháng 11 2021 lúc 20:17

nhìn hơi đau mắt nhá bạn hoa mắt quá

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
TM
6 tháng 6 2023 lúc 9:58

(a) Điều kiện : \(x\ne-1.\)

Ta có : \(P=\dfrac{x^4+x}{x^2-x+1}+1-\dfrac{2x^2+3x+1}{x+1}\)

\(=\dfrac{x\left(x^3+1\right)}{x^2-x+1}+1-\dfrac{\left(2x+1\right)\left(x+1\right)}{x+1}\)

\(=\dfrac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}+1-\left(2x+1\right)\)

\(=x\left(x+1\right)+1-2x-1\)

\(=x^2-x.\)

Vậy : Với mọi \(x\ne-1\) thì \(P=x^2-x.\)

 

(b) Ta có : \(P=x^2-x\)

\(=\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2\)

\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Vậy : \(MinP=-\dfrac{1}{4}.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=\dfrac{1}{2}.\)

Bình luận (0)
TL
Xem chi tiết
TH
18 tháng 8 2019 lúc 14:50

(2x - 1)2 + 2(2x - 1)(x + 1) + (x - 1)2 (Dễ dàng nhận thấy đây là HĐT số 1)

= (2x -1 + x - 1)2

= (3x - 2)2

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 8 2019 lúc 3:30

Ta có: P = x − x + 2 ( x + 1 ) ( x − 2 ) − x x ( x − 2 ) : 1 − x 2 − x = x − x + 2 − x ( x + 1 ) ( x + 1 ) ( x − 2 ) . 2 − x 1 − x = 2 − 2 x ( x + 1 ) ( x − 1 ) = 2 ( 1 − x ) ( x + 1 ) ( x − 1 ) = − 2 x + 1  

Bình luận (0)