rút gọn biểu thức P=√x / √x+2√x−1 / 1−√x+2x / x−1
Rút gọn biểu thức sau. Với giá trị nào của x, giá trị của biểu thức rút gọn là dương?
(\(\dfrac{\dfrac{x}{x+1}}{\dfrac{x^2}{x^2+x+1}}\) - \(\dfrac{2x+1}{x^2+x}\))\(\dfrac{x^2-1}{x-1}\)
\(\left(\dfrac{\dfrac{x}{x+1}}{\dfrac{x^2}{x^2+x+1}}-\dfrac{2x+1}{x^2+x}\right)\dfrac{x^2-1}{x-1}\)ĐK : \(x\ne\pm1\)
\(=\left(\dfrac{x}{x+1}.\dfrac{x^2+x+1}{x^2}-\dfrac{2x+1}{x\left(x+1\right)}\right)\left(x+1\right)=\left(\dfrac{x^2+x-1}{x^2+x}-\dfrac{2x+1}{x\left(x+1\right)}\right)\left(x+1\right)\)
\(=\left(\dfrac{x^2+x-1-2x-1}{x\left(x+1\right)}\right)\left(x+1\right)=\dfrac{x^2-3x-2}{x}\)
à xin lỗi mình nhầm dòng cuối
\(=\dfrac{x^2-x-2}{x}=\dfrac{\left(x+1\right)\left(x-2\right)}{x}\)
Để biểu thức trên nhận giá trị dương khi
\(\dfrac{\left(x+1\right)\left(x-2\right)}{x}>0\)bạn tự xét TH cả tử và mẫu nhé, mình đánh trên này bị lỗi
P (2x-1).4x^2+2x+1+(x+1)x^2-x+1
Để rút gọn biểu thức, ta sẽ thực hiện các phép tính và kết hợp các thành phần tương tự: P(2x-1).4x^2 + 2x + 1 + (x+1)x^2 - x + 1 = P(8x^3 - 4x^2) + 2x + 1 + x^3 + x^2 - x + 1 = P(8x^3) - P(4x^2) + x^3 + (2x-x) +(1+1) = **8Px^3 - 4Px^2**+ x^3 **+ x**+ **2** Vậy biểu thức đã được rút gọn thành: **8Px³ - 4Px²+x³+x+2**
Cho biểu thức : P= (1/ x+1) - (x ^ 3 - x)/(x ^ 2 + 1) × (1/(x ^ 2 + 2x + 1) - (1/x ^ 2 - 1) * voi x ko = 1,-1
a) rút gọn biểu thức
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.
a: \(P=\dfrac{1}{x+1}-\dfrac{x^3-x}{x^2+1}\cdot\dfrac{1}{x^2+2x+1}-\dfrac{1}{x^2-1}\)
\(=\dfrac{1}{x+1}-\dfrac{x\left(x^2-1\right)}{x^2+1}\cdot\dfrac{1}{\left(x+1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1}{x+1}-\dfrac{x\left(x-1\right)}{\left(x^2+1\right)\left(x+1\right)}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-1-1}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x^2+1\right)\left(x+1\right)}\)
\(=\dfrac{x-2}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x^2+1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x-2\right)\left(x^2+1\right)-x\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}\)
\(=\dfrac{x^3+x-2x^2-2x-x^3+2x^2-x}{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}\)
\(=\dfrac{-2x}{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}\)
cho biểu thức
P=(\(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\)).(1-\(\dfrac{1}{x}-\dfrac{2}{x^2}\)) ( x≠0; x≠2)
rút gọn biểu thức P
tính giá trị biểu thức P với x=1/2
a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{x^2-x-2}{x^2}\right)\)
\(=\dfrac{x\left(x-2\right)^2+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x^2-x-2\right)}{x^2}\)
\(=\dfrac{x\left[x^2-4x+4+4x\right]}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x+1}{2x}\)
b) Thay \(x=\dfrac{1}{2}\) vào P, ta được:
\(P=\dfrac{1}{2}+1=\dfrac{3}{2}\)
cho biểu thức:A=[(1/x-1)+(x/x^3-1).(x^2+x+1/x+1)]:2x+1/x^2+2x+1
a,rút gọn biểu thức A
b,tính giá trị của biểu thức khi x=1/2
\(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne-\frac{1}{2}\end{cases}}\)
a) \(A=\left(\frac{1}{x-1}+\frac{x}{x^3-1}\cdot\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)
\(\Leftrightarrow A=\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{\left(x+1\right)^2}\)
\(\Leftrightarrow A=\frac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(x+1\right)^2}{2x+1}\)
\(\Leftrightarrow A=\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow A=\frac{x+1}{x-1}\)
b) Thay \(x=\frac{1}{2}\)vào A, ta được :
\(A=\frac{\frac{1}{2}+1}{\frac{1}{2}-1}=\frac{\frac{3}{2}}{-\frac{1}{2}}=-3\)
1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z để (A,B)thuộc Z
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0
3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B b)tìm x để B=3/2 c) tìm giá trị nguyên của x để B có giả trị nguyên
4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1 d) tìm giá trị nhỏ nhất của biểu thức C
5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
bạn viết thế này khó nhìn quá
nhìn hơi đau mắt nhá bạn hoa mắt quá
Cho biểu thức P= x^4+x/x^2-x+1 +1 - 2x^2+3x+1/x+1
a). Rút gọn biểu thức P
b). Tính GTNN của P
(a) Điều kiện : \(x\ne-1.\)
Ta có : \(P=\dfrac{x^4+x}{x^2-x+1}+1-\dfrac{2x^2+3x+1}{x+1}\)
\(=\dfrac{x\left(x^3+1\right)}{x^2-x+1}+1-\dfrac{\left(2x+1\right)\left(x+1\right)}{x+1}\)
\(=\dfrac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}+1-\left(2x+1\right)\)
\(=x\left(x+1\right)+1-2x-1\)
\(=x^2-x.\)
Vậy : Với mọi \(x\ne-1\) thì \(P=x^2-x.\)
(b) Ta có : \(P=x^2-x\)
\(=\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Vậy : \(MinP=-\dfrac{1}{4}.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=\dfrac{1}{2}.\)
rút gọn biểu thức (2x-1)^2+2(2x-1)(x+1)+(x-1)^2
(2x - 1)2 + 2(2x - 1)(x + 1) + (x - 1)2 (Dễ dàng nhận thấy đây là HĐT số 1)
= (2x -1 + x - 1)2
= (3x - 2)2
Rút gọn biểu thức: P = x − x + 2 x − x − 2 − x x − 2 x : 1 − x 2 − x với x > 0 ; x ≠ 1 ; x ≠ 4
Ta có: P = x − x + 2 ( x + 1 ) ( x − 2 ) − x x ( x − 2 ) : 1 − x 2 − x = x − x + 2 − x ( x + 1 ) ( x + 1 ) ( x − 2 ) . 2 − x 1 − x = 2 − 2 x ( x + 1 ) ( x − 1 ) = 2 ( 1 − x ) ( x + 1 ) ( x − 1 ) = − 2 x + 1