Với giá trị nào của x thì căn thức sau có nghĩa :
\(\sqrt{x^2+2x+2}\)
với giá trị nào của x thì căn thức sau có nghĩa
\(\sqrt{\dfrac{x^2+2x+4}{2x-3}}\)
Với giá trị nào của x thì căn thức sau có nghĩa :
\(\sqrt{\dfrac{3x-2}{x^2-2x+4}}\)
\(\Leftrightarrow3x-2\ge0\)
hay \(x\ge\dfrac{2}{3}\)
Với giá trị nào của x thì căn thức sau có nghĩa:
\(\sqrt{2x^2+4x+5}\)
để căn có nghĩa thì \(2x^2+4x+5\ge0\)
\(\Rightarrow2x^2+4x+2+3\ge0\Rightarrow2\left(x+1\right)^2+3\ge0\) (luôn đúng)
\(\Rightarrow\) căn luôn có nghĩa với mọi \(x\in R\)
bài 1Với giá trị nào của x thì căn thức sau có nghĩa:
a)\(\sqrt{2x^2+4x+5}\)
b) \(\sqrt{-x^2+4x-4}\)
a: ĐKXĐ: \(x\in R\)
b: ĐKXĐ: x=2
b. \(\sqrt{-x^2+4x-4x}\)
= \(\sqrt{-\left(-x^2+4x-4x\right)}\)
= \(\sqrt{x^2-4x+4x}\)
= \(\sqrt{x^2}\)
Một căn thức muốn có nghĩa cần giá trị trong căn không âm
=> x \(\in\) R
với các giá trị nào của x thì các căn thức kia có nghĩa
\(\sqrt{\dfrac{3x-2}{x^2-2x+4}}\)
\(\sqrt{\dfrac{2x-3}{2x^2+1}}\)
\(\sqrt{\dfrac{3x-2}{x^2-2x+4}}=\sqrt{\dfrac{3x-2}{\left(x-2\right)^2}}\)
Có nghĩa khi:
\(\left\{{}\begin{matrix}\dfrac{3x-2}{\left(x-2\right)^2}\ge0\\\left(x-2\right)^2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x\ne2\end{matrix}\right.\)
____________________
\(\sqrt{\dfrac{2x-3}{2x^2+1}}\)
Có nghĩa khi:
\(\dfrac{2x-3}{2x^2+1}\ge0\)
\(\Leftrightarrow2x-3\ge0\)
\(\Leftrightarrow x\ge\dfrac{3}{2}\)
a: ĐKXĐ: (3x-2)/(x^2-2x+4)>=0
=>3x-2>=0
=>x>=2/3
b: ĐKXĐ: (2x-3)/(2x^2+1)>=0
=>2x-3>=0
=>x>=3/2
Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
\(\dfrac{x}{x-2}\)+ \(\sqrt{x-2}\) + \(\sqrt{x-2}\)\(\dfrac{x}{x^2-4}\)
Biểu thức có nghĩa \(<=>\begin{cases} x^2-4 \ne 0\\x-2 \ge0 \end{cases}\)
\(<=>\begin{cases} x \ne \pm 2\\x \ge 2\end{cases}\)
`<=>x > 2`
hmmm....đợi cô nghĩ chút<)
Bài 1 Với giá trị nào của x thì căn thức sau có nghĩa:
a) \(\sqrt{2x^2+4x+5}\)
b) \(\sqrt{\dfrac{3x-2}{x^2-2x+4}}\)
Với giá trị nào của x thì các căn thức sau có nghĩa:
a) \(\sqrt{2x^2+4x+5}\)
b)\(\sqrt{-x^2+4x+4}\)
a) ĐKXĐ: \(x\in R\)
b) ĐKXĐ: \(-2\sqrt{2}+2\le x\le2\sqrt{2}+2\)
bài 1 Với giá trị nào của x thì căn thức sau có nghĩa:
a) \(\sqrt{\left(x-2\right)\left(x-6\right)}\)
b) \(\sqrt{1-x^2}\)
\(\sqrt{-5x-10}\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge6\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(-1\le x\le1\)
c: ĐKXĐ: \(x\le-2\)
a. \(\sqrt{\left(x-2\right)\left(x-6\right)}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-6\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ge6\end{matrix}\right.\) \(\Leftrightarrow x\ge6\)
b. \(\sqrt{1-x^2}\) có nghĩa \(\Leftrightarrow1-x^2\ge0\) \(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\x+1\ge0\end{matrix}\right.\) \(\Leftrightarrow-1\le x\le1\)
\(\sqrt{-5x-10}\) có nghĩa \(\Leftrightarrow-5x-10\ge0\Leftrightarrow-5x\ge10\Leftrightarrow x\ge-2\)