Tinh \(\frac{1}{\sqrt{7}-\sqrt{24}+1}-\frac{1}{\sqrt{7+\sqrt{24}+\sqrt{1}}}\)
Tinh \(\frac{1}{\sqrt{7}-\sqrt{24}+1}-\frac{1}{\sqrt{7}+\sqrt{24}+1}\)
Tinh \(\frac{1}{\sqrt{7}-\sqrt{24}+1}-\frac{1}{\sqrt{7}+\sqrt{24}+1}\)
Tinh Gia tri bieu thuc \(\frac{1}{\sqrt{7-\sqrt{24}}+1}-\frac{1}{\sqrt{7+\sqrt{24}+1}}\)
\(\frac{1}{\sqrt{7-\sqrt{24}}+1}-\frac{1}{\sqrt{7+\sqrt{24}+1}}\)
\(=\frac{1}{\sqrt{6-2\sqrt{6}+1}+1}-\frac{1}{\sqrt{6+2\sqrt{6}+1}+1}\)
\(=\frac{1}{\sqrt{\left(\sqrt{6}-1\right)^2}+1}-\frac{1}{\sqrt{\left(\sqrt{6}+1\right)^2}+1}\)
\(=\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}+2}\)
\(=\frac{\sqrt{6}+2}{\sqrt{6}.\left(\sqrt{6}+2\right)}-\frac{\sqrt{6}}{\sqrt{6}.\left(\sqrt{6}+2\right)}\)
\(=\frac{2}{6+2\sqrt{6}}=\frac{12-4\sqrt{6}}{12}=\frac{3-\sqrt{6}}{3}\)
Sao \(\frac{2}{6+2\sqrt{6}}=\frac{12-4\sqrt{6}}{12}\) hả bạn
Tinh gia tri bieu thuc \(\frac{1}{\sqrt{7}-\sqrt{24}+1}-\frac{1}{\sqrt{7}+\sqrt{24}+1}\)
Tính:
\(a)\frac{1}{\sqrt{7-\sqrt{24}}+1}+\frac{1}{\sqrt{7+\sqrt{24}}-1}\\ b)\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2014}+\sqrt{2015}}\)
\(a=\frac{1}{\sqrt{7-2\sqrt{6}}+1}+\frac{1}{\sqrt{7+2\sqrt{6}}-1}=\frac{1}{\sqrt{\left(\sqrt{6}-1\right)^2}+1}+\frac{1}{\sqrt{\left(\sqrt{6}+1\right)^2}-1}\)
\(=\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}}=\frac{2}{\sqrt{6}}=\frac{\sqrt{6}}{3}\)
Coi lại đề câu b, quy luật ở số hạng cuối cùng sai (nhìn 2 số hạng đầu 2 số dưới căn hơn kém nhau 4 đơn vị, số cuối lại chỉ hơn kém nhau 1 đơn vị)
Tinh gia tri cua bieu thuc : a) A = \(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{24}+\sqrt{25}}\)
b) B = \(\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{9}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}\)
Bạn trục căn thức ở mẫu rồi trừ đi là xong nhé,vì khi trục căn thức thì ở A mẫu chung là 1,ở B mẫu chung là 2.
A=(√3-√2)/(3-2)+(√4-√3)/(4-3)+......
=√3-√2+√4-√3+......+√25-√24
=√25-√2=5-√2.Câu b tương tự
Tính
\(\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\frac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
\(\frac{1}{\sqrt{7-\sqrt{24}+1}}-\frac{1}{\sqrt{7+\sqrt{24}-1}}:\left(\sqrt{3}-\sqrt{2}\right)\)
\(\frac{1}{\sqrt{7-\sqrt{24}+1}}+\frac{1}{\sqrt{7+\sqrt{24}+1}}\)
Rút gọn
=\(\frac{1}{\sqrt{7-2\sqrt{6}_{ }}+1}+\frac{1}{\sqrt{7+2\sqrt{6}}+1}\)
=\(\frac{1}{\sqrt{\left(\sqrt{6}-1\right)^2+1}}+\frac{1}{\sqrt{\left(\sqrt{6+1}\right)^2}+1}\)
=\(\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}+2}\)
=\(\frac{\sqrt{6}+2+\sqrt{6}}{\sqrt{6}\left(\sqrt{6}+2\right)}\)
=\(\frac{2\sqrt{6}+2}{6+2\sqrt{6}}\)
\(\frac{1}{\sqrt{7-\sqrt{24}}+1}+\frac{1}{\sqrt{7+\sqrt{24}}+1}\)
Rút gọn
\(\sqrt{7+\sqrt{24}=\sqrt{7+2\sqrt{6}}=\sqrt{\left(\sqrt{6}+1\right)^2}}\)
\(\frac{1}{\sqrt{7-\sqrt{24}}+1}+\frac{1}{\sqrt{7+\sqrt{24}}+1}\)
\(=\frac{1}{\sqrt{7-2\sqrt{6}}+1}+\frac{1}{\sqrt{7+2\sqrt{6}}+1}\)
\(=\frac{1}{\sqrt{\left(\sqrt{6}-1\right)^2}+1}+\frac{1}{\sqrt{\left(\sqrt{6}+1\right)^2}+1}\)
\(=\frac{1}{\sqrt{6}-1+1}+\frac{1}{\sqrt{6}+1+1}\)
\(=\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}+2}=\frac{\sqrt{6}+2+\sqrt{6}}{6+2\sqrt{6}}=\frac{2\sqrt{6}+2}{6+2\sqrt{6}}\)