Violympic toán 9

DN

Tính:

\(a)\frac{1}{\sqrt{7-\sqrt{24}}+1}+\frac{1}{\sqrt{7+\sqrt{24}}-1}\\ b)\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2014}+\sqrt{2015}}\)

NL
14 tháng 9 2020 lúc 22:37

\(a=\frac{1}{\sqrt{7-2\sqrt{6}}+1}+\frac{1}{\sqrt{7+2\sqrt{6}}-1}=\frac{1}{\sqrt{\left(\sqrt{6}-1\right)^2}+1}+\frac{1}{\sqrt{\left(\sqrt{6}+1\right)^2}-1}\)

\(=\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}}=\frac{2}{\sqrt{6}}=\frac{\sqrt{6}}{3}\)

Coi lại đề câu b, quy luật ở số hạng cuối cùng sai (nhìn 2 số hạng đầu 2 số dưới căn hơn kém nhau 4 đơn vị, số cuối lại chỉ hơn kém nhau 1 đơn vị)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
KP
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
NH
Xem chi tiết