cho a+\(\dfrac{1}{a}\)=3 tính A=a\(^5\)+\(\dfrac{1}{a^5}\)
Bài 1.
a, Cho\(\dfrac{a}{3}\)=\(\dfrac{b}{4}\)=\(\dfrac{c}{5}\) và a+b+c=24. Tính M = a.b + b.c + ca
b, Cho\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)= \(\dfrac{c}{4}\)=\(\dfrac{d}{5}\) và a+b+c+d = -42. Tính N = a.b +c.d
Bài 2.
a, Biết\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\) và x+y+z= 24. Tính A = 3x + 2y - 6z
b, Biết\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\) và x-y+z = 6\(\sqrt{2}\). Tính B = xy - yz
2:
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{24}{9}=\dfrac{8}{3}\)
=>x=16/3; y=8; z=32/3
A=3x+2y-6z
=3*16/3+2*8-6*32/3
=16+16-64
=-32
b: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y+z}{5-6+7}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
=>x=5căn 2; y=6căn 2; y=7căn 2
B=xy-yz
=y(x-z)
=6căn 2(5căn 2-7căn 2)
=-6căn 2*2căn 2
=-24
bài 1 a)áp dụng dãy tỉ số bằng nhau ta có:\(\dfrac{a+b+c}{3+4+5}\)=\(\dfrac{24}{12}\)=2
a=2.3=6 ; b=2.4=8 ;c=2.5=10
M=ab+bc+ac=6.8+8.10+6.10=48+80+60=188
"nhưng bài còn lại làm tương tự"
Tính giá trị của b.thức sau :
a) A= \(a.\dfrac{1}{3}+a.\dfrac{1}{4}-a.\dfrac{1}{6}\) với \(a=\dfrac{-3}{5}\)
b) \(B=b.\dfrac{5}{6}+b.\dfrac{3}{4}-b.\dfrac{1}{2}\) với \(b=\dfrac{12}{13}\)
a) `A=a. 1/3 + a. 1/4 - a.1/6 = a. (1/3+1/4 -1/6)=a. 5/12`
Thay `a=-3/5: A=-3/5 . 5/12 =-1/4`
b) `B=b. 5/6+ b. 3/4-b. 1/2=b.(5/6+3/4-1/2)=b. 13/12`
Thay `b=12/13: B=12/13 . 13/12=1`.
a) Ta có: \(A=a\cdot\dfrac{1}{3}+a\cdot\dfrac{1}{4}-a\cdot\dfrac{1}{6}\)
\(=a\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{6}\right)\)
\(=a\cdot\left(\dfrac{4}{12}+\dfrac{3}{12}-\dfrac{2}{12}\right)\)
\(=a\cdot\dfrac{5}{12}\)
\(=\dfrac{-3}{5}\cdot\dfrac{5}{12}=\dfrac{-1}{4}\)
b) Ta có: \(B=b\cdot\dfrac{5}{6}+b\cdot\dfrac{3}{4}-b\cdot\dfrac{1}{2}\)
\(=b\left(\dfrac{5}{6}+\dfrac{3}{4}-\dfrac{1}{2}\right)\)
\(=b\cdot\left(\dfrac{10}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right)\)
\(=b\cdot\dfrac{5}{4}\)
\(=\dfrac{12}{13}\cdot\dfrac{5}{4}=\dfrac{60}{52}=\dfrac{15}{13}\)
a) \(A=a\cdot\dfrac{1}{3}+a\cdot\dfrac{1}{4}-a\cdot\dfrac{1}{6}\\ A=a\cdot\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{6}\right)\\ A=a\cdot\dfrac{-5}{12}\)
Khi \(a=\dfrac{-3}{5}\), ta có:
\(A=\dfrac{-3}{5}\cdot\dfrac{-5}{12}\\ A=\dfrac{1}{4}\)
Vậy khi \(a=\dfrac{-3}{5}\) thì \(A=\dfrac{1}{4}\)
b. \(B=b\cdot\dfrac{5}{6}+b\cdot\dfrac{3}{4}-b\cdot\dfrac{1}{2}\\ B=b\cdot\left(\dfrac{5}{6}+\dfrac{3}{4}-\dfrac{1}{2}\right)\\ B=b\cdot\dfrac{13}{12}\)
Khi \(a=\dfrac{12}{13}\), ta có:
\(B=\dfrac{12}{13}\cdot\dfrac{13}{12}\\ B=1\)
Vậy khi \(a=\dfrac{-3}{5}\) thì B = 1
a. Tìm a, biết: 1 - ( 5\(\dfrac{4}{9}\) + a - 7\(\dfrac{7}{18}\) ) : 15\(\dfrac{3}{4}\) = 0
b. Tính b = ( \(\dfrac{2}{15}\) + \(\dfrac{5}{3}\) - \(\dfrac{3}{5}\) ) : ( \(4\dfrac{2}{3}\) - \(2\dfrac{1}{2}\) )
a: \(1-\left(5\dfrac{4}{9}+a-7\dfrac{7}{18}\right):15\dfrac{3}{4}=0\)
=>\(\left(5+\dfrac{4}{9}+a-7-\dfrac{7}{18}\right):\dfrac{63}{4}=1\)
=>\(\left(a-2+\dfrac{1}{18}\right)=\dfrac{63}{4}\)
=>\(a-\dfrac{35}{18}=\dfrac{63}{4}\)
=>\(a=\dfrac{63}{4}+\dfrac{35}{18}=\dfrac{637}{36}\)
b: \(B=\left(\dfrac{2}{15}+\dfrac{5}{3}-\dfrac{3}{5}\right):\left(4\dfrac{2}{3}-2\dfrac{1}{2}\right)\)
\(=\dfrac{2+5\cdot5-3^2}{15}:\left(4+\dfrac{2}{3}-2-\dfrac{1}{2}\right)\)
\(=\dfrac{2+4^2}{15}:\left(2+\dfrac{2}{3}-\dfrac{1}{2}\right)\)
\(=\dfrac{18}{15}:\dfrac{13}{6}=\dfrac{6}{5}\cdot\dfrac{6}{13}=\dfrac{36}{65}\)
cho biết \(\dfrac{a}{2}-b=c\dfrac{2}{3}\)và a,b,c khác 0. Tính giá trị biểu thức Q=2018-\(\left(\dfrac{c}{a}-\dfrac{1}{3}\right)^5.\left(\dfrac{a}{2}-2\right)^5.\left(\dfrac{3}{2}+\dfrac{b}{c}\right)^5\)
Bài 1: tính
a) 3\(\dfrac{1}{2}\) + 4\(\dfrac{5}{7}\) - 5\(\dfrac{5}{14}\) b) 4\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) : \(5\dfrac{1}{2}\)
bài 2: tìm X
a) X x \(3\dfrac{1}{3}\) = \(3\dfrac{1}{3}\) : \(4\dfrac{1}{4}\) b) \(5\dfrac{2}{3}\) : X = \(3\dfrac{2}{3}\) - \(2\dfrac{1}{2}\)
các giáo viên olm giúp e vs, e cần gấp lắm!
\(3\dfrac{1}{2}+4\dfrac{5}{7}-5\dfrac{5}{14}\)
= \(\dfrac{7}{2}+\dfrac{33}{7}-\dfrac{75}{14}\)
= \(\dfrac{49}{14}+\dfrac{66}{14}-\dfrac{75}{14}\)
= \(\dfrac{40}{14}=\dfrac{20}{7}\)
\(4\dfrac{1}{2}+\dfrac{1}{2}\div5\dfrac{1}{2}\)
=\(\dfrac{9}{2}+\dfrac{1}{2}\div\dfrac{11}{2}\)
=\(\dfrac{9}{2}+\dfrac{1}{2}\times\dfrac{2}{11}\)
=\(\dfrac{9}{2}+\dfrac{1}{11}\)
=\(\dfrac{101}{22}\)
\(x\times3\dfrac{1}{3}=3\dfrac{1}{3}\div4\dfrac{1}{4}\)
\(x\times\dfrac{10}{3}=\dfrac{10}{3}\div\dfrac{17}{4}\)
\(x\times\dfrac{10}{3}=\dfrac{10}{3}\times\dfrac{4}{17}\)
\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)
\(x=\dfrac{40}{51}\div\dfrac{10}{3}\)
\(x=\dfrac{40}{51}\times\dfrac{3}{10}\)
\(x=\dfrac{120}{510}=\dfrac{12}{51}=\dfrac{4}{7}\)
\(5\dfrac{2}{3}\div x=3\dfrac{2}{3}-2\dfrac{1}{2}\)
\(\dfrac{17}{3}\div x=\dfrac{11}{3}-\dfrac{5}{2}\)
\(\dfrac{17}{3}\div x=\dfrac{7}{6}\)
\(x=\dfrac{17}{3}\div\dfrac{7}{6}\)
\(x=\dfrac{17}{3}\times\dfrac{6}{7}\)
\(x=\dfrac{102}{21}=\dfrac{34}{7}\)
giúp em vs ạ :((( Viết chương trình nhập vào từ bàn phím số nguyên dương N(N chia hết cho 3) a là số bất kì .Tính và đưa ra màn hình tổng T.
\(T=\dfrac{a+5}{1+5}+\dfrac{a+3}{1+3}+\dfrac{a+6}{1+6}+\dfrac{a+9}{1+9}+...+\dfrac{a+N}{1+N}\)
tức là từ a cộng mấy đến a+n vậy bạn?
tính GTBT:
a)a.\(\left(\dfrac{-3}{2}\right)+a.\dfrac{1}{4}-a.\dfrac{5}{6}vớia=\dfrac{3}{5}\)
b)\(\dfrac{2}{5}.b-\dfrac{1}{3}.b+b.\left(\dfrac{-1}{2}\right)vớib=\dfrac{6}{13}\)
c)c.\(\dfrac{5}{6}+\dfrac{3}{4}.c-\dfrac{11}{12}.c\) với c=\(\dfrac{2019}{2020}\)
a) Ta có: \(a\left(-\dfrac{3}{2}\right)+a\cdot\dfrac{1}{4}-a\cdot\dfrac{5}{6}\)
\(=a\left(-\dfrac{3}{2}+\dfrac{1}{4}-\dfrac{5}{6}\right)\)
\(=a\left(\dfrac{-18}{12}+\dfrac{3}{12}-\dfrac{10}{12}\right)\)
\(=a\cdot\dfrac{-25}{12}\)(1)
Thay \(a=\dfrac{3}{5}\) vào biểu thức (1), ta được:
\(\dfrac{3}{5}\cdot\dfrac{-25}{12}=\dfrac{-75}{60}=\dfrac{-5}{4}\)
Cho biểu thức \(A=\left|a-\dfrac{1}{5}\right|+\left|a-\dfrac{1}{5}\right|\)
Tính giá trị biểu thức \(A\) với \(a=\dfrac{1}{4}\)
\(a=\dfrac{1}{4}\Leftrightarrow A=\left|\dfrac{1}{4}-\dfrac{1}{5}\right|+\left|\dfrac{1}{4}-\dfrac{1}{5}\right|=\left|\dfrac{1}{20}\right|+\left|\dfrac{1}{20}\right|=\dfrac{2}{20}=\dfrac{1}{10}\)
Cho \(a+b=5,ab=-2\left(a< b\right)\). Hãy tính \(a^2+b^2,\dfrac{1}{a^3}+\dfrac{1}{b^3},a-b,a^3-b^3\)
\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=29\)
\(a-b=\sqrt{\left(a+b\right)^2-4ab}=\sqrt{5^2-4\cdot\left(-2\right)}=\sqrt{41}\)