Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LM
Xem chi tiết
LT
Xem chi tiết
HT
Xem chi tiết
KN
30 tháng 4 2020 lúc 15:21

\(ĐKXĐ:x,y,z\ge1\left(x,y,z\inℤ\right)\)

Ta có: \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4.\frac{2x+y}{2}.\frac{3y}{2}=3y\left(2x+y\right)\)

\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự: \(\frac{2y+z}{y\left(y+2x\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\);\(\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)

\(\Rightarrow A\le\frac{1}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(*)

Ta có: \(\sqrt{2x-1}=\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)(BĐT Cô - si)

\(\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

Tương tự: \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\);\(\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(**)

Từ (*) và (**) suy ra \(A=\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\le3\)

Đẳng thức xảy ra khi x = y = z = 1

Bình luận (0)
 Khách vãng lai đã xóa
TL
1 tháng 5 2020 lúc 10:03

Từ đẳng thức đã cho suy ra \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\)

Áp dụng\(\left(a+b\right)^2\ge4ab\)ta có \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4\cdot\frac{2x+y}{2}\cdot\frac{3y}{2}\)

\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)(Dấu "=" xảy ra <=> x=y)

=> \(\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự \(\hept{\begin{cases}\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\\\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\end{cases}}\)

=> \(A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(Dấu "=" xảy ra <=> x=y=z)

Ta có \(\sqrt{\left(2x-1\right)\cdot1}\le\frac{\left(2x-1\right)+1}{2}\Rightarrow\sqrt{2x-1}\le x\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

Tương tự \(\hept{\begin{cases}\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\\\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\end{cases}}\)

Do đó \(A\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(dấu "=" xảy ra <=> x=y=z=1)

Vậy MaxA=3 đạt được khi x=y=z=1

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
NT
29 tháng 9 2016 lúc 13:41

Đăng từng bài thôi chứ bạn

Bình luận (1)
HP
29 tháng 9 2016 lúc 15:57

mk lm nha

 

Bình luận (1)
NA
18 tháng 1 2017 lúc 20:28

1.

a)Ta có: 3.x=y.7

3x chia hết cho 7 mà 3 và 7 là số nguyên tố cùng nhau

suy ra: x chia hết cho 2 hay x=2k (k thuộc tập hợp số nguyên)

7y chia hết cho 3 mà 7 và 3 là số nguyên tố cùng nhau

suy ra: y chia hết cho 3 hay y=7k (k thuộc tập hợp số nguyên)

(y khác 0 nên k khác 0)

vậy: x=2.k

y=5.k

(k thuộc tập hợp Z và k khác 0)

Bình luận (0)
BL
Xem chi tiết
NL
23 tháng 11 2019 lúc 14:03

a/ \(\frac{2x+1}{\sqrt{x^2+2}}+\left(x+1\right)\left(\sqrt{1+\frac{2x+1}{x^2+2}}-1\right)+2x+1=0\)

\(\Leftrightarrow\frac{2x+1}{\sqrt{x^2+2}}+\frac{\left(x+1\right)\left(2x+1\right)}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+2x+1=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\frac{1}{\sqrt{x^2+2}}+\frac{x+1}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+1\right)=0\)

\(\Rightarrow x=-\frac{1}{2}\)

b/ \(Q\ge\frac{\left(x+y+z\right)^2}{xyz\left(x+y+z\right)}+\frac{\left(x^3+y^3+z^3\right)^2}{xy+yz+zx}\ge\frac{x+y+z}{xyz}+\frac{\left(x^2+y^2+z^2\right)^3}{\left(x+y+z\right)^2}\)

\(Q\ge\frac{27\left(x+y+z\right)}{\left(x+y+z\right)^3}+\frac{\left(x+y+z\right)^6}{27\left(x+y+z\right)^2}=\frac{27}{\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}\)

\(Q\ge\frac{27}{64\left(x+y+z\right)^2}+\frac{27}{64\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}+\frac{837}{32\left(x+y+z\right)^2}\)

\(Q\ge3\sqrt[3]{\frac{27^2\left(x+y+z\right)^4}{64^2.27\left(x+y+z\right)^4}}+\frac{837}{32.\left(\frac{3}{2}\right)^2}=\frac{195}{16}\)

"=" \(\Leftrightarrow x=y=z=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
BL
23 tháng 11 2019 lúc 12:54

Nguyễn Trúc Giang, Duy Khang, Vũ Minh Tuấn, Võ Hồng Phúc, tth, No choice teen, Phạm Lan Hương,

Nguyễn Lê Phước Thịnh, @Nguyễn Việt Lâm, @Akai Haruma

giúp em vs ạ! Cần trước 5h chiều nay ạ

Thanks nhiều

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
H24
7 tháng 12 2018 lúc 20:37

\(x:y:z=3:4:5\Leftrightarrow x=3k;y=4k;z=5k\)

\(2x^2+2y^2-3z^2=2.\left(3k\right)^2+2.\left(4k\right)^2-3.\left(5k\right)^2=18k^2+32k^2-75k^2=100\)

\(\Leftrightarrow-25k^2=-100\Leftrightarrow k^2=4\Leftrightarrow k=2\Rightarrow x=6;y=8;z=10\)

Bình luận (0)
H24
7 tháng 12 2018 lúc 20:43

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}=\frac{x+1+y+2-z+1}{3+4-5}=\frac{54}{2}=27\Rightarrow laanfluot:\)

Bình luận (0)
DN
7 tháng 12 2018 lúc 20:57

Chia làm 2 phần hả bạn.

Phần 1: 

            \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\Leftrightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có;

\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)

Suy ra \(x^2=36;y^2=64;z^2=100\Rightarrow x=\pm6;y=\pm8;z=\pm10\)

Vậy (x,y,z) = (6,8,10) : (-6,-8,-10)

Phần 2 :

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}=\frac{x+1+y+2-\left(z-1\right)}{3+4-5}=\frac{54}{2}=27\)

Suy ra \(\hept{\begin{cases}x=80\\y=106\\z=136\end{cases}}\)

Bình luận (0)
NN
Xem chi tiết
VD
20 tháng 8 2016 lúc 11:49

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{5}{x+y+z}=\frac{x+y}{2z}=\frac{y+z-1}{2x}=\frac{z+x+1}{2y}=\frac{x+y+y+z-1+z+x+1}{2z+2x+2y}=1\)

=> x + y + z = 5 : 1 = 5 (1)

      x + y = 2z (2)

     y + z - 1 = 2x => y + z = 2x + 1(3)

     z + x + 1 = 2y => x + z = 2y - 1(4)

Thay (2) vào (1) ta có:

  2z + z =5

=> 3z = 5

=> z = 5 : 3 = 1,(6)

Thay (3) vào (1) ta có:

x + 2x + 1 = 5

=> 3x = 5 - 1 = 4

=> x = 4 : 3 = 1,(3)

=> 1,(3) + y + 1,(6) = 5

=> y + 3 = 5

=> y = 5 - 3 = 2

Vậy x = 1,(3) ; y = 2 ; z = 1,(6)

Mình là học sinh lớp 7 nên ko biết đúng ko

Bình luận (0)
DN
20 tháng 8 2016 lúc 12:22

bn làm đúng, tui đã thử lại rùi, tui tish cho bn

Bình luận (0)
TK
Xem chi tiết
IU
Xem chi tiết
HA
22 tháng 12 2019 lúc 17:47

c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)\(2x^2+2y^2-3z^2=-100\)

đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)

\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)

\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)

\(2x^2+2y^2-3z^2=-100\)

thay\(6k^2+8k^2-15k^2=-100\)

\(k^2\left(6+8-15\right)=-100\)

\(k^2.\left(-1\right)=-100\)

\(k^2=100\)

\(\Rightarrow k=\pm10\)

bạn thế vào nha

Bình luận (0)
 Khách vãng lai đã xóa