Những câu hỏi liên quan
DN
Xem chi tiết
SS
3 tháng 7 2016 lúc 21:15

\(\sqrt{7+\sqrt{24}=\sqrt{7+2\sqrt{6}}=\sqrt{\left(\sqrt{6}+1\right)^2}}\)

Bình luận (0)
DN
3 tháng 7 2016 lúc 21:17

mình cũng làm vậy nhưng ko ra kết quả 

Bình luận (0)
NV
3 tháng 7 2016 lúc 21:24

\(\frac{1}{\sqrt{7-\sqrt{24}}+1}+\frac{1}{\sqrt{7+\sqrt{24}}+1}\)

\(=\frac{1}{\sqrt{7-2\sqrt{6}}+1}+\frac{1}{\sqrt{7+2\sqrt{6}}+1}\)

\(=\frac{1}{\sqrt{\left(\sqrt{6}-1\right)^2}+1}+\frac{1}{\sqrt{\left(\sqrt{6}+1\right)^2}+1}\)

\(=\frac{1}{\sqrt{6}-1+1}+\frac{1}{\sqrt{6}+1+1}\)

\(=\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}+2}=\frac{\sqrt{6}+2+\sqrt{6}}{6+2\sqrt{6}}=\frac{2\sqrt{6}+2}{6+2\sqrt{6}}\)

Bình luận (0)
PA
Xem chi tiết
VT
13 tháng 8 2016 lúc 8:46

bạn tách mau  ra rồi tính như bình thường thôi mà . bài này dễ chứ ko khó . 

Bình luận (0)
BQ
Xem chi tiết
NV
21 tháng 5 2017 lúc 10:15

Nhân liên hiệp ta được :

\(\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}-\sqrt{2}\right)\left(\sqrt{1}+\sqrt{2}\right)}+\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{\sqrt{24}+\sqrt{25}}{\left(\sqrt{24}-\sqrt{25}\right)\left(\sqrt{24}+\sqrt{25}\right)}\)

\(=\frac{\sqrt{1}+\sqrt{2}}{1-2}+\frac{\sqrt{2}+\sqrt{3}}{2-3}+...+\frac{\sqrt{24}+\sqrt{25}}{24-25}\)

\(=-\sqrt{1}-\sqrt{2}-\sqrt{2}-\sqrt{3}-....-\sqrt{24}-\sqrt{25}\)

\(=-\left[\frac{\left(\sqrt{25}+\sqrt{1}\right).25}{2}+\frac{\left(\sqrt{24}+\sqrt{2}\right).23}{2}\right]\)

\(=...\)

Bình luận (0)
HN
Xem chi tiết
HA
Xem chi tiết
SN
Xem chi tiết
KN
20 tháng 11 2019 lúc 13:25

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{24}+\sqrt{25}}\)

\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{1}+\sqrt{2}}+\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}}\)

\(+...+\frac{\left(\sqrt{25}-\sqrt{24}\right)\left(\sqrt{25}+\sqrt{24}\right)}{\sqrt{24}+\sqrt{25}}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{25}-\sqrt{24}\)

\(=\sqrt{25}-1=5-1=4\)

Bình luận (0)
 Khách vãng lai đã xóa
LH
30 tháng 10 2016 lúc 20:12

\(\frac{1}{\sqrt{1}\sqrt{2}}+\frac{1}{\sqrt{2}\sqrt{3}}+...+\frac{1}{\sqrt{24}\sqrt{25}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{25}}\)

Bình luận (0)
LH
30 tháng 10 2016 lúc 20:03

Khó quá

Bình luận (0)
DN
Xem chi tiết
NL
14 tháng 9 2020 lúc 22:37

\(a=\frac{1}{\sqrt{7-2\sqrt{6}}+1}+\frac{1}{\sqrt{7+2\sqrt{6}}-1}=\frac{1}{\sqrt{\left(\sqrt{6}-1\right)^2}+1}+\frac{1}{\sqrt{\left(\sqrt{6}+1\right)^2}-1}\)

\(=\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}}=\frac{2}{\sqrt{6}}=\frac{\sqrt{6}}{3}\)

Coi lại đề câu b, quy luật ở số hạng cuối cùng sai (nhìn 2 số hạng đầu 2 số dưới căn hơn kém nhau 4 đơn vị, số cuối lại chỉ hơn kém nhau 1 đơn vị)

Bình luận (0)
TT
Xem chi tiết
HM
Xem chi tiết