Giải phương trình:
(4x+2x+18.5-10).3=66.5
15+5.4+3.10+5.3=4.5.x
tính các biểu thức sau và viết kết quả dưới dạng bình phương của 1 số
b bằng 5.3 mũ 2+4.3 mũ 2
c bằng 5 mũ 3+6 mũ 3+59
d 5.4 mũ 3+2 mũ 4.5+41
\(B=5.3^2+4.3^2=3^2\left(5+4\right)=9.9=9^2\)
\(C=5^3+6^3+59=125+216+59=400=20^2\)
\(D=5.4^3+2^4.5+41=320+80+41=441=21^2\)
b: \(5\cdot3^2+4\cdot3^2=3^2\cdot9=3^4\)
c: \(5^3+6^3+59=20^2\)
\(5\cdot4^3+2^4\cdot5+41=21^2\)
Giải phương trình: 2x-1/5 - 4x/3 = 2x- x/10
\(\dfrac{2x-1}{5}-\dfrac{4x}{3}=2x-\dfrac{x}{10}\\ \Leftrightarrow\dfrac{6\left(2x-1\right)}{30}-\dfrac{40x}{30}=\dfrac{60x}{30}-\dfrac{3x}{30}\\ \Leftrightarrow12x-6-40x=60x-3x\\ \Leftrightarrow-28x-6=57x\\ \Leftrightarrow57x+28x+6=0\\ \Leftrightarrow85x=-6\\ \Leftrightarrow x=-\dfrac{6}{85}\)
Giải bất phương trình: \(\sqrt{x-1}+\sqrt{3-x}+4x\sqrt{2x}\ge x^3+10\)
Giải bất phương trình: \(\sqrt{x-1}+\sqrt{3-x}+4x\sqrt{2x}\ge x^3+10\)
ĐKXĐ : \(1\le x\le3\)
Ta có \(\sqrt{x-1}+\sqrt{3-x}+4x\sqrt{2x}\ge x^3+10\)
<=> \(-2\sqrt{x-1}-2\sqrt{3-x}-8x\sqrt{2x}\le-2x^3-20\)
<=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+2x^3-8x\sqrt{2x}+16\le0\)(1)
Đặt \(\sqrt{2x}=y\) => \(x=\dfrac{y^2}{2}\)
Khi đó \(2x^3-8x\sqrt{2x}+16=\dfrac{y^6}{4}-4y^3+16=\left(\dfrac{y^3-8}{2}\right)^2\)
Khi đó (1) <=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\le0\)(1)
mà \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\ge0\forall x;y\)(2)
Từ (2)(1) => \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2=0\)
<=> \(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{3-x}-1=0\\\dfrac{y^3-8}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\3-x=1\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\\\sqrt{2x}=2\end{matrix}\right.\Leftrightarrow x=2\)
Vậy x = 2 là nghiệm bất phương trình
Giải bất phương trình: \(\sqrt{x-1}+\sqrt{3-x}+4x\sqrt{2x}\ge x^3+10\)
Giải các phương trình sau. Làm tròn kết quả đến hàng phần nghìn.
a) \({3^{x + 2}} = 7\);
b) \({3.10^{2x + 1}} = 5\).
\(a,3^{x+2}=7\\ \Leftrightarrow x+2=log_37\\ \Leftrightarrow x=log_37-2\approx-0.229\)
\(b,3\cdot10^{2x+1}=5\\ \Leftrightarrow10^{2x+1}=\dfrac{5}{3}\\ \Leftrightarrow2x+1=log\left(\dfrac{5}{3}\right)\\ \Leftrightarrow2x=log\left(\dfrac{5}{3}\right)-1\\ \Leftrightarrow x=\dfrac{1}{2}\cdot log\dfrac{5}{3}-\dfrac{1}{2}\\ \Leftrightarrow x\approx-0,389\)
Bài 1: Giải các bất phương trình và phương trình sau :
a) 2(3-4x) = 10-(2x – 5)
Giải các bất phương trình và phương trình sau :
a) 3(2-4x) = 11-(3x – 1)
Bài 1:
a) Ta có: \(2\left(3-4x\right)=10-\left(2x-5\right)\)
\(\Leftrightarrow6-8x-10+2x-5=0\)
\(\Leftrightarrow-6x+11=0\)
\(\Leftrightarrow-6x=-11\)
hay \(x=\dfrac{11}{6}\)
b) Ta có: \(3\left(2-4x\right)=11-\left(3x-1\right)\)
\(\Leftrightarrow6-12x-11+3x-1=0\)
\(\Leftrightarrow-9x-6=0\)
\(\Leftrightarrow-9x=6\)
hay \(x=-\dfrac{2}{3}\)
giải các hệ phương trình
9x-6y=4 và 3(4x-3y)=-3x+y+7
3(x+1)+2y=-x và 5(x+y)=-3x+y-5
2(2x+3y)=3(2x-3y)+10 và 4x-3y=4(6y-2x)+3
Giải các phương trình sau:
\(a.\left|x-3\right|=4x+1\)
\(b.\left|x-2\right|+2x=10\)
a.\(\left|x-3\right|=4x+1\)
\(ĐK:4x+1\ge0\Leftrightarrow4x\ge-1\Leftrightarrow x\ge\dfrac{-1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=4x+1\\x-3=-4x-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4x=1+3\\x+4x=-1+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x=4\\5x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4}{3}\left(ktm\right)\\x=\dfrac{2}{5}\left(tm\right)\end{matrix}\right.\)
Vay S \(=\left\{\dfrac{2}{5}\right\}\)
b. \(\left|x-2\right|+2x=10\\ \Leftrightarrow\left|x-2\right|=10-2x\)
ĐK : \(10-2x\ge0\Leftrightarrow-2x\ge-10\Leftrightarrow x\le5\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=10-2x\\x-2=2x-10\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+2x=10+2\\x-2x=-10+2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=12\\-x=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=8\left(ktm\right)\end{matrix}\right.\)
Vay S \(=\left\{4\right\}\)