Cho \(a,b,c,d,e\)là các số thực . Chứng minh rằng \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a,b,c là các số thực bất kì, chứng mình rằng:
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(a+b+c+d+e\ge a\left(b+c+d+e\right)\)
\(\Leftrightarrow\left(a-kb\right)^2+\left(a-kc\right)^2+\left(a-kd\right)^2+\left(a-ke\right)^2\ge0\)
Ta chọn \(k=2\)hay nhân 2 vế với 4
*Xét hiệu 2 vế bất đẳng thức.
\(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)
\(=\frac{4\left(a^2+b^2+c^2+d^2+e^2\right)-4\left(ab+ac+ad+ae\right)}{4}\)
\(=\frac{\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)}{4}\)
\(=\frac{\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2}{4}\ge0\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)
Đẳng thức xảy ra khi\(a=2b=2c=2d=2e\)
Cho a,b,c,d,e là các số thực. Chứng minh rằng:
1) \(a^4+b^4+c^4+1\ge2a\left(a^2b-a+c+1\right)\)
2) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
3) \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Cho a, b, c, d, e là các số thực CMR \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)( luôn đúng )
Vậy ...
Có nhiều cách biểu diễn:
VD
\(VT-VP=\frac{\left(a-b-c\right)^2+\left(a-d-e\right)^2+\left(b-c\right)^2+\left(d-e\right)^2}{2}\) (còn rất nhiều ...)
cho a,b,c,d,e là các số thực .CMR:\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)
<=>(a2-4ab+4b2)+(a2-4ac+4c2)+(a2-4ad+4d2)+(a2-4ae+e2)\(\ge\)0
<=>(a-2b)2+(a-2c)2+(a-2d)2+(a-2e)2\(\ge\)0 (luôn đúng)
=>dpcm
nhân 2 vế cho 4 chuyển qua lại rồi dùng HĐT bạn ạ
Nếu nhân 2 vế cho 4 ra thế nào?
Bt hè
a)Cho a,b,c,d,e là các số thực. Chứng minh rằng:
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
b) cho biểu thức \(P=\frac{yz\sqrt{x-1}+zx\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)Tìm giá trị lớn nhất của P
làm xong ấn hủy :(( chán
\(bđt\Leftrightarrow2a^2+2b^2+2c^2+2d^2+2e^2-2ab-2ac-2ad-2ae\ge0\)
\(\Leftrightarrow a^2-2a\left(d+e\right)+\left(d+e\right)^2+b^2-2bc+c^2+a^2-2a\left(b+c\right)+\left(b+c\right)^2+d^2-2de+e^2\ge0\)
\(\Leftrightarrow\left(a-d-e\right)^2+\left(b-c\right)^2+\left(a-b-c\right)^2+\left(d-e\right)^2\ge0\)*đúng*
Vậy ta có điều phải chứng minh
cách khác câu a)
ta xét P=a2-a(b+c+d+e)+b2+c2+d2+e2 là một tam thức bậc 2 theo biến a ta có \(\Delta=\left(b+d+c+e\right)^2-4\left(b^2+d^2+c^2+e^2\right)\)
theo bđt cauchy-schwarz ta có \(\left(1+1+1+1\right)\left(b^2+c^2+d^2+e^2\right)\ge\left(b+d+c+e\right)^2\)
do đó \(\Delta\le0\), theo định lí về dấu của tam thức bậc hai ta được
a2-a(b+c+d+e) +b2+c2+d2+e2>=0
bài toán được chứng minh
\(P=\frac{yz\sqrt{x-1}+zx\sqrt{y-2}+xy\sqrt{z-3}}{xyz}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)
Đặt \(t=\sqrt{x-1}\)lúc đó \(A=\frac{\sqrt{x-1}}{x}=\frac{t}{t^2+1}\Leftrightarrow At^2-t+A=0\)
\(\Delta=1^2-4A^2\ge0\Rightarrow A\le\frac{1}{2}\)
Tương tự, ta có: \(\frac{\sqrt{y-2}}{y}\le\frac{\sqrt{2}}{4};\frac{\sqrt{z-3}}{z}\le\frac{\sqrt{3}}{6}\)
Dấu = xảy ra khi \(x=2;y=\sqrt{2};z=\sqrt{3}\), \(P_{min}=\frac{6+3\sqrt{2}+2\sqrt{3}}{12}\)
Cho a,b,c,d,e là các số thực. CM:
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
So i dì:))
Xét hiệu:
\(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)
\(=a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\)
\(=\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\)
\(=\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\)
Do \(\left(\frac{a}{2}-b\right)^2\ge0\forall a,b;\left(\frac{a}{2}-c\right)^2\ge0\forall a,c\);\(\left(\frac{a}{2}-d\right)^2\ge0\forall a,d;\left(\frac{a}{2}-e\right)^2\ge0\forall a,e\)Do đó:
\(\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu"="xảy ra khi \(b=c=d=e=\frac{a}{2}\)
ô kê :))
a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )
<=> a2 + b2 + c2 + d2 + e2 ≥ ab + ac + ad + ae
Nhân 4 vào từng vế ta được
<=> 4( a2 + b2 + c2 + d2 + e2 ) ≥ 4( ab + ac + ad + ae )
<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 ≥ 4ab + 4ac + 4ad + 4ae
<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 - 4ab - 4ac - 4ad - 4ae ≥ 0
<=> ( a2 - 4ab + 4b2 ) + ( a2 - 4ac + 4c2 ) + ( a2 - 4ad + 4d2 ) + ( a2 - 4ae + 4e2 ) ≥ 0
<=> ( a - 2b )2 + ( a - 2c )2 + ( a - 2d )2 + ( a - 2e )2 ≥ 0 ( đúng )
Vậy bđt được chứng minh
Dấu "=" xảy ra <=> b = c = d = e = a/2
Cho các số thực a,b,c,d,e thỏa mãn \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\)chứng minh rằng: \(\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)=\dfrac{a^2}{b.c}\)
Sửa: CMR: \(\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)^3=\dfrac{a^2}{bc}\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\\ \Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)^3\left(1\right)\\ \dfrac{a}{b}=\dfrac{b}{c}=k\Rightarrow a=bk;b=ck\Rightarrow a=ck^2\\ \Rightarrow\dfrac{a^2}{bc}=\dfrac{c^2k^4}{ck\cdot c}=k^3=\left(\dfrac{a}{b}\right)^3\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)
Chứng minh rằng với a,b,c,d,e là các số thực ta có \(a^2+b^2+c^2+d^2+e^2\ge ab+ab+ac+ad+ae\)
ae vứt 1 ab ra nha
\(a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(\Leftrightarrow4\left(a^2+b^2+c^2+d^2+e^2\right)\ge4a\left(b+c+d+e\right)\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ac+4c^2\right)\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)
Bất đẳng thức đúng vậy ta có điều phải chứng minh
Cho a,b,c,d,e là các số thực chứng minh rằng:
d) \(\dfrac{a^2+b^2}{2}>=\left(\dfrac{a+b}{2}\right)^2\)
e) \(\dfrac{a^2+b^2+c^2}{3}>=\left(\dfrac{a+b+c}{3}\right)^2\)
d) \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\left(\dfrac{a+b}{2}\right)^2\)
<=> \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\dfrac{a^2+2ab+b^2}{4}\)
<=> 4(a2 + b2 ) \(\ge\) 2 ( a2 + 2ab + b2 )
<=> 4a2 + 4b2 \(\ge\) 2a2 + 4ab +2b2
<=> 4a2 + 4b2 - 2a2 - 4ab - 2b2 \(\ge\) 0
<=> 2a2 - 4ab + 2b2 \(\ge\) 0
<=> a2 -2ab +b2 \(\ge\) 0
<=> (a-b)2 \(\ge\) 0 ( luôn đúng)
=> \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\left(\dfrac{a+b}{2}\right)^2\)
Và dấu bằng xảy ra <=> a = b
e) Làm tương tự nhé! Có gì ko hiểu thì hỏi lại mk! Ok??