Những câu hỏi liên quan
TN
Xem chi tiết
NT
31 tháng 8 2021 lúc 19:38

a: Thay \(x=6-2\sqrt{5}\) vào A, ta được:

\(A=1-\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=1-\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)

b: Ta có: P=A:B

\(=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{x-5\sqrt{x}+6}\right)\)

\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

Bình luận (0)
LG
Xem chi tiết
NT
3 tháng 8 2021 lúc 20:09

b) Thay x=49 vào A, ta được:

\(A=\dfrac{7-1}{7-5}=\dfrac{6}{2}=3\)

Bình luận (0)
NT
3 tháng 8 2021 lúc 22:53

a) Ta có: \(B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\)

\(=\dfrac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+7\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)

Bình luận (0)
My
Xem chi tiết
PH
Xem chi tiết
AH
1 tháng 4 2021 lúc 22:33

Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1; x\neq 25$

a) 

\(A=\frac{4\sqrt{x}}{\sqrt{x}-5}:\left[\frac{(\sqrt{x}-2)(\sqrt{x}+2)+\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+2}+\frac{5-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+2)}\right]\)

\(=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{x-4+\sqrt{x}-1+5-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+2)}\)

\(=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}}{\sqrt{x}+2}=\frac{4\sqrt{x}}{\sqrt{x}-5}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{4(\sqrt{x}+2)}{\sqrt{x}-5}\)

b) Tại $x=81$ thì $\sqrt{x}=9$.

Khi đó: $A=\frac{4(9+2)}{9-5}=11$

c) $A< 4\Leftrightarrow \frac{\sqrt{x}+2}{\sqrt{x}-5}< 1$

$\Leftrightarrow \frac{7}{\sqrt{x}-5}< 0\Leftrightarrow \sqrt{x}-5< 0$

$\Leftrightarrow 0\leq x< 25$. Kết hợp với ĐKXĐ suy ra: $0\leq x< 25; x\neq 1$

Bình luận (1)
H24
Xem chi tiết
NT
7 tháng 9 2023 lúc 13:43

a) \(A=\dfrac{x^2+3x}{x^2-25}+\dfrac{1}{x+5};B=\dfrac{x-5}{x+2}\left(x\ne\pm5;-2\right)\)

Khi \(x=9\) thì :

\(B=\dfrac{9-5}{9+2}=\dfrac{4}{11}\)

b) \(P=A.B\)

\(\Leftrightarrow P=\left[\dfrac{x^2+3x}{x^2-25}+\dfrac{1}{x+5}\right].\dfrac{x-5}{x+2}\)

\(\Leftrightarrow P=\left[\dfrac{x^2+3x}{\left(x+5\right)\left(x-5\right)}+\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}\right].\dfrac{x-5}{x+2}\)

\(\Leftrightarrow P=\left[\dfrac{x^2+4x-5}{\left(x+5\right)\left(x-5\right)}\right].\dfrac{x-5}{x+2}\)

\(\Leftrightarrow P=\left[\dfrac{x^2+5x-x-5}{x+5}\right].\dfrac{1}{x+2}\)

\(\Leftrightarrow P=\left[\dfrac{x\left(x+5\right)-\left(x+5\right)}{x+5}\right].\dfrac{1}{x+2}\)

\(\Leftrightarrow P=\left[\dfrac{\left(x+5\right)\left(x-1\right)}{x+5}\right].\dfrac{1}{x+2}\)

\(\Leftrightarrow P=\dfrac{x-1}{x+2}\)

c) Theo đề bài để

\(P=\dfrac{x-1}{x+2}>\dfrac{1}{3}\left(x>-2\right)\)

\(\Leftrightarrow3\left(x-1\right)>x+2\)

\(\Leftrightarrow3x-3>x+2\)

\(\Leftrightarrow2x>5\)

\(\Leftrightarrow x>\dfrac{5}{2}\left(thỏa,đk:x>-2\right)\)

Bình luận (0)
H24
7 tháng 9 2023 lúc 13:38

a) Để tính giá trị của B khi x = 9, ta thay x = 9 vào biểu thức B: B = (x - 5)/(x + 2) - 5/(x + 2) = (9 - 5)/(9 + 2) - 5/(9 + 2) = 4/11 - 5/11 = -1/11

Vậy giá trị của B khi x = 9 là -1/11.

b) Để rút gọn biểu thức P = A.B, ta nhân các thành phần tương ứng của A và B: P = (x^2 + 3x)/(x^2 - 25 + 1) * (x - 5)/(x + 2) = (x(x + 3))/(x^2 - 24) * (x - 5)/(x + 2) = (x(x + 3)(x - 5))/(x^2 - 24)(x + 2)

Vậy biểu thức P được rút gọn thành P = (x(x + 3)(x - 5))/(x^2 - 24)(x + 2).

c) Để tìm giá trị của x khi P > 13 với x > -2, ta giải phương trình: (x(x + 3)(x - 5))/(x^2 - 24)(x + 2) > 13

Bình luận (0)
L2
Xem chi tiết
NM
14 tháng 10 2021 lúc 9:15

\(A=\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\dfrac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ A=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(x=\dfrac{9-4\sqrt{5}-9-4\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}:2\sqrt{5}=\dfrac{-8\sqrt{5}}{-2\sqrt{5}}=4\\ \Leftrightarrow\sqrt{x}=2\\ \Leftrightarrow A=\dfrac{2-1}{2+2}=\dfrac{1}{4}\)

Bình luận (0)
PP
Xem chi tiết
LV
5 tháng 6 2023 lúc 14:21

\(3\dfrac{1}{2}+4\dfrac{5}{7}-5\dfrac{5}{14}\)

\(\dfrac{7}{2}+\dfrac{33}{7}-\dfrac{75}{14}\)

\(\dfrac{49}{14}+\dfrac{66}{14}-\dfrac{75}{14}\)

\(\dfrac{40}{14}=\dfrac{20}{7}\)

\(4\dfrac{1}{2}+\dfrac{1}{2}\div5\dfrac{1}{2}\)

=\(\dfrac{9}{2}+\dfrac{1}{2}\div\dfrac{11}{2}\)

=\(\dfrac{9}{2}+\dfrac{1}{2}\times\dfrac{2}{11}\)

=\(\dfrac{9}{2}+\dfrac{1}{11}\)

=\(\dfrac{101}{22}\)

\(x\times3\dfrac{1}{3}=3\dfrac{1}{3}\div4\dfrac{1}{4}\)

\(x\times\dfrac{10}{3}=\dfrac{10}{3}\div\dfrac{17}{4}\)

\(x\times\dfrac{10}{3}=\dfrac{10}{3}\times\dfrac{4}{17}\)

\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)

\(x=\dfrac{40}{51}\div\dfrac{10}{3}\)

\(x=\dfrac{40}{51}\times\dfrac{3}{10}\)

\(x=\dfrac{120}{510}=\dfrac{12}{51}=\dfrac{4}{7}\)

\(5\dfrac{2}{3}\div x=3\dfrac{2}{3}-2\dfrac{1}{2}\)

\(\dfrac{17}{3}\div x=\dfrac{11}{3}-\dfrac{5}{2}\)

\(\dfrac{17}{3}\div x=\dfrac{7}{6}\)

\(x=\dfrac{17}{3}\div\dfrac{7}{6}\)

\(x=\dfrac{17}{3}\times\dfrac{6}{7}\)

\(x=\dfrac{102}{21}=\dfrac{34}{7}\)

Bình luận (0)
TH
Xem chi tiết
NT
2 tháng 5 2022 lúc 16:09

c.\(\dfrac{3}{7}+\dfrac{5}{7}:x=\dfrac{1}{3}\)

\(\dfrac{5}{7}:x=\dfrac{1}{3}-\dfrac{3}{7}\)

\(\dfrac{5}{7}:x=-\dfrac{2}{21}\)

\(x=\dfrac{5}{7}:-\dfrac{2}{21}\)

\(x=-\dfrac{15}{2}\)

d.\(3\dfrac{1}{4}:\left|2x-\dfrac{5}{12}\right|=\dfrac{39}{16}\)

\(\left|2x-\dfrac{5}{12}\right|=3\dfrac{1}{4}:\dfrac{39}{16}\)

\(\left|2x-\dfrac{5}{12}\right|=\dfrac{4}{3}\)

\(\rightarrow\left[{}\begin{matrix}2x-\dfrac{5}{12}=\dfrac{4}{3}\\2x-\dfrac{4}{12}=-\dfrac{4}{3}\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}2x=\dfrac{7}{4}\\2x=-\dfrac{11}{12}\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}x=\dfrac{7}{8}\\x=-\dfrac{11}{24}\end{matrix}\right.\)

Bình luận (0)
VT
2 tháng 5 2022 lúc 16:22

A, \(\dfrac{4}{9}+x=\dfrac{5}{3}\)

\(x\)\(=\dfrac{5}{3}-\dfrac{4}{9}\)

\(x\)\(=\dfrac{11}{9}\)

B,\(\dfrac{3}{4}.x=\dfrac{-1}{2}\)

\(x=\dfrac{-1}{2}:\dfrac{3}{4}\)

\(x=\)\(\dfrac{-2}{3}\)

Bình luận (0)
H24
2 tháng 5 2022 lúc 16:22

a)

\(\frac{4}{9} + x = \frac{5}{3}\)

=> \(x = \frac{5}{3}-\frac{4}{9}\)

=> \(x = \) \(\frac{11}{9}\)

Vậy \(x = \dfrac{11}{9}\)

b) 

\(\dfrac{3}{4} .x = \dfrac{-1}{2}\)

=> \(x = \dfrac{-1}{2} : \dfrac{3}{4}\)

=> \(x = \dfrac{-2}{3}\)

Vậy \(x = \dfrac{-2}{3}\)

c)

\( \dfrac{3}{7}+ \dfrac{5}{7}:x = \dfrac{1}{3}\)

=> \(\dfrac{5}{7}:x = \dfrac{1}{3}-\) \( \dfrac{3}{7}\)

=> \(\dfrac{5}{7}:x = \dfrac{-2}{21}\)

=> \(x = \dfrac{5}{7}:\dfrac{-2}{21}\)

=> \(x = \dfrac{-15}{2}\)

Vậy \(x = \dfrac{-15}{2}\)

d) 

\(3\dfrac{1}{4} : |2x - \dfrac{5}{12} | = \dfrac{39}{16}\)

=> \(\dfrac{13}{4} : |2x - \dfrac{5}{12} | = \dfrac{39}{16}\)

=> \( |2x - \dfrac{5}{12} | =\dfrac{13}{4} : \dfrac{39}{16}\)

=> \(|2x-\dfrac{5}{12} |= \dfrac{4}{3}\)

=> \(\left[\begin{matrix} 2x - \dfrac{5}{12} = \dfrac{4}{3}\\ 2x - \dfrac{5}{12} = \dfrac{4}{3}\end{matrix}\right.\)

=> \(\left[\begin{matrix} 2x = \dfrac{-4}{3}+\dfrac{5}{12}\\ 2x = \dfrac{-4}{3}+\dfrac{5}{12} \end{matrix}\right.\)

=> \(\left[\begin{matrix} 2x = \dfrac{7}{4}\\ 2x = \dfrac{-11}{12} \end{matrix}\right.\)

=> \(\left[\begin{matrix} x = \dfrac{7}{8}\\ x = \dfrac{-11}{24} \end{matrix}\right.\)

Vậy \(x \in \) { \(\dfrac{7}{8} ; \dfrac{-11}{24}\) }

Bình luận (0)
NB
Xem chi tiết
NM
17 tháng 9 2021 lúc 21:34

\(a,B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\left(x\ge0;x\ne1\right)\\ B=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ B=\dfrac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x+7\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)

 

Bình luận (0)
NT
17 tháng 9 2021 lúc 21:35

b: Ta có: \(B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\)

\(=\dfrac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)

Bình luận (0)
NM
17 tháng 9 2021 lúc 21:40

\(b,C=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-5}\cdot\dfrac{\sqrt{x}+6}{\sqrt{x}-1}+\dfrac{x-5}{\sqrt{x}-5}\right)\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}}\\ =\dfrac{\sqrt{x}+6+x-5}{\sqrt{x}-5}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}}\\ =\dfrac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\ge2\sqrt{\sqrt{x}\cdot\dfrac{1}{\sqrt{x}}}+1=2\cdot1+1=3\left(BĐT.cosi\right)\)

Dấu \("="\Leftrightarrow x=1\left(ktm\right)\) nên dấu \("="\) không xảy ra

Bình luận (0)