Những câu hỏi liên quan
NU
Xem chi tiết
NN
14 tháng 6 2018 lúc 21:13

kang daniel

Bình luận (0)
NU
15 tháng 6 2018 lúc 11:09

Hi hi jungkook

Bình luận (0)
H24
Xem chi tiết
DD
Xem chi tiết
BB
Xem chi tiết
NT
8 tháng 8 2021 lúc 18:49

a) Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)

Xét ΔADC có 

Q là trung điểm của AD

P là trung điểm của CD

Do đó: QP là đường trung bình của ΔADC

Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(2)

Từ (1) và (2) suy ra MN//QP và MN=QP

Xét tứ giác MNPQ có 

MN//QP(cmt)

MN=QP(cmt)

Do đó: MNPQ là hình bình hành

Xét ΔABD có 

Q là trung điểm của AD

M là trung điểm của AB

Do đó: QM là đường trung bình của ΔABD

Suy ra: QM//DB và \(QM=\dfrac{DB}{2}\)

hay \(QM=\dfrac{AC}{2}\)(3)

Từ (2) và (3) suy ra QM=QP

Hình bình hành MNPQ có QM=QP(cmt)

nên MNPQ là hình thoi

Bình luận (0)
b
Xem chi tiết
PB
25 tháng 3 2020 lúc 16:50

sorry mik ko biết nhưng hãy k cho mik

Bình luận (0)
 Khách vãng lai đã xóa
b
Xem chi tiết
NH
25 tháng 3 2020 lúc 14:27

Xét tam giác ABC có OE // BC . áp dụng định lý ta-lét ta có

AE/AB=AO/AC (1)

Xét tam giác ADC có OF//CD . áp dụng định lý ta-lét ta có 

AF/AD=AO/AC (2)

TỪ (1)(2) suy ra AE/AB=AF/AD 

Xét tam giác ABD có AE/AB=AF/AD (CMT) . áp dụng định ý ta-lét đảo ta suy ra EF//BD (đpcm)

câu b )

áp dụng định lý ta -lét cho tam giác ACD có OH//AD suy ra 

CH/DH=CO/AO (3)

Aps dụng định lý ta-lét cho tam giác abc có OG//AB có 

CG/GB=OC/OA (4)

TỪ (3)(4) suy ra CH/DH=CG/GB 

Suy ra CH.GB=HD.CG (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
b
Xem chi tiết
H24
24 tháng 3 2020 lúc 11:10

A B C D E F O G H

a) Trong tam giác ABC có OE // BC nên \(\frac{AE}{AB}=\frac{AO}{AC}\)( theo định lí Ta-let )

Trong tam giác ACD có OF // CD nên \(\frac{AF}{AD}=\frac{AO}{AC}\) ( theo định lí Ta-let )

Vậy \(\frac{AE}{AB}=\frac{AF}{AD}\Rightarrow FE//BD\)( áp dụng định lí Ta-let đảo tong tam giác ABD )

b) Tương tự trong tam giác ABC có : OG // AB nên \(\frac{CG}{BG}=\frac{CO}{OA}\)

Trong tam giác ACD có OH // AD nên \(\frac{CH}{DH}=\frac{CO}{OA}\)

Vậy \(\frac{CG}{GB}=\frac{CH}{GB}\Rightarrow CG.DH=CH.GB\)

Bình luận (0)
 Khách vãng lai đã xóa
GC
Xem chi tiết
LT
25 tháng 3 2020 lúc 17:12

?????????????????????????/

Bình luận (0)
 Khách vãng lai đã xóa
TL
27 tháng 3 2020 lúc 19:12

 a. Trong ΔABC có OE // BC nên : \(\frac{AE}{AB}=\frac{AO}{AC}\) (Talet)

      Trong ΔACD có OF// CD nên :  \(\frac{AF}{AD}=\frac{AO}{AC}\) ( Talet) 

Vậy \(\frac{AE}{AB}=\frac{AF}{AD}\) => EF//BD(ap dung Ta let dao trong ΔABD)

b. Tuong tu trong ΔABC co OG//AB nen \(\frac{CG}{BG}=\frac{CO}{OA}\)

   Trong ΔACD co OH // AD nen : \(\frac{CH}{DH}=\frac{CO}{OA}\)

Vay \(\frac{CG}{GB}=\frac{CH}{GB}\) => CG.DH = CH.BG

Nguồn: haybuu (hoidap247)

Bình luận (0)
 Khách vãng lai đã xóa
a
Xem chi tiết
LT
25 tháng 3 2020 lúc 17:11

???????????????????????

Bình luận (0)
 Khách vãng lai đã xóa
NV
27 tháng 3 2020 lúc 11:46

a. Trong ΔABC co OE // BC nen : AE/AB = AO/AC (ta let)

      Trong ΔACD co OF// CD nen :  AF/AD = AO/AC ( ----) 

Vay AE/AB = AF/AD => FE //BD (ap dung Ta let dao trong ΔABD)

b. Tuong tu Trong ΔABC co OG//AB nen CG/BG = CO/OA

   Trong ΔACD co OH // AD nen : CH/DH = CO/OA

Vậy CG/GB=CH/GB=>CG.DH=CH.BG

k mk nha

Bình luận (0)
 Khách vãng lai đã xóa