Bài 1: Tứ giác.

BB

Cho tứ giác ABCD có hai đường chéo bằng nhau và cắt nhau tại O. Gọi M, N, P, Q tương ứng là trung điểm của các cạnh AB, BC, CD, DA. 

a) Chứng minh tứ giác MNPQ có các cạnh bằng nhau.

b) MP cắt AC và BD tại E và F. Chứng minh rằng tam giác OEF cân

NT
8 tháng 8 2021 lúc 18:49

a) Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)

Xét ΔADC có 

Q là trung điểm của AD

P là trung điểm của CD

Do đó: QP là đường trung bình của ΔADC

Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(2)

Từ (1) và (2) suy ra MN//QP và MN=QP

Xét tứ giác MNPQ có 

MN//QP(cmt)

MN=QP(cmt)

Do đó: MNPQ là hình bình hành

Xét ΔABD có 

Q là trung điểm của AD

M là trung điểm của AB

Do đó: QM là đường trung bình của ΔABD

Suy ra: QM//DB và \(QM=\dfrac{DB}{2}\)

hay \(QM=\dfrac{AC}{2}\)(3)

Từ (2) và (3) suy ra QM=QP

Hình bình hành MNPQ có QM=QP(cmt)

nên MNPQ là hình thoi

Bình luận (0)

Các câu hỏi tương tự
QM
Xem chi tiết
H24
Xem chi tiết
BV
Xem chi tiết
YD
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
QT
Xem chi tiết
HD
Xem chi tiết