Những câu hỏi liên quan
H24
Xem chi tiết
US
27 tháng 1 2016 lúc 21:08

anh đã trở lại

Bình luận (0)
NA
Xem chi tiết
NT
1 tháng 9 2023 lúc 15:17

sửa đề: A=1+2+2^2+...+2^2007

a: \(2\cdot A=2+2^2+2^3+...+2^{2008}\)

b: \(2\cdot A=2^{2008}+2^{2007}+...+2^3+2^2+2\)

\(A=2^{2007}+2^{2006}+...+2+1\)

=>\(2A-A=2^{2008}-1\)

=>\(A=2^{2008}-1\)

Bình luận (2)
JW
1 tháng 9 2023 lúc 16:25

a) 2A = 2 + 22 + 23 +...+ 22008

b) ......................... =) A = 22008 - 1

Bình luận (1)
MP
1 tháng 9 2023 lúc 16:57

Sửa đề:\(1+2+2^2+...+2^{2007}\)

a) \(2A-A=2.\left(1+2+2^2+...+2^{2007}\right)-\left(1+2+2^2+...+2^{2007}\right)\)

b) \(2A-A=2.\left(1+2+2^2+...+2^{2007}\right)-\left(1+2+2^2+...+2^{2007}\right)\)

\(A=\left(2+2^2+...+2^{2008}\right)-\left(1+2+2^2+...+2^{2007}\right)\)

\(A=2^{2008}-1\)

Bình luận (2)
KK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
11 tháng 12 2017 lúc 8:28

Câu b, chuyển 3^2010 thành 2^2010 nhé!

Bình luận (0)
PC
Xem chi tiết
LP
20 tháng 9 2017 lúc 6:05

a) A = 21 + 22 + 23 + 24 +...+ 22010

=> A = (2 + 22) + 22.(2 + 22) + ... + 22008.(2 + 22)

=> A = 6 + 22.6 + ... + 22008.6

=> A = 6 . (1 + 22 + ... + 22008\(⋮\)3 => A \(⋮\)3.

A = 21 + 22 + 23 +...+ 22010

=> A = (21 + 22 + 23) + ... + (22008 + 22009 + 22010)

=> A = 14 + ... + 22007.(2 + 22 + 23)

=> A = 14 + ... + 22007.14

=> A = 14.(1+...+22007\(⋮\)7 => A \(⋮\)7

b) Để B chia hết cho 4 thì bạn gộp 2 số lại ( được 1 thừa số là 12 ) => B chia hết cho 4.

Để B chia hết cho 7 thì bạn gộp 3 số lại ( được 1 thừa số là 39 ) => B chia hết cho 13.

Sorry, bài B không làm chặt chẽ được vì mình bận đi học rồi.

Chúng bạn học tốt.

Bình luận (0)
BA
5 tháng 1 2021 lúc 19:38

cho mình hỏi bạn Phúc lí do vì sao lại là 2 mũ 2008

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NM
10 tháng 9 2021 lúc 16:20

\(a,\left(\sqrt{3}-1\right)^2=3-2\sqrt{3}+1=4-2\sqrt{3}\\ b,\sqrt{4-2\sqrt{3}}-\sqrt{3}=\left(\sqrt{3}-1\right)-\sqrt{3}=-1\)

Bình luận (0)
PP
Xem chi tiết
H24
23 tháng 5 2022 lúc 16:36

\(A=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{4}\right)^2+...+\left(\dfrac{1}{2013}\right)^2\)

\(A=\left(\dfrac{1}{2+3+4+...+2013}\right)^2\)

\(A=\left(\dfrac{1}{\left(2013-2\right)+1}\right)^2\)

\(A=\left(\dfrac{1}{2012}\right)^2\)

\(A=\dfrac{1}{2012\cdot2012}\)

\(\Rightarrow A=\dfrac{1}{2012}< \dfrac{3}{4}\)

Bình luận (0)
H24
Xem chi tiết
BP
24 tháng 12 2019 lúc 18:20

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

\(\Rightarrow a=b=c\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
BP
24 tháng 12 2019 lúc 18:18

Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(3\left(a^2+b^2+c^2\right)=3a^2+3b^2+3c^2\)
\(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{matrix}\right.\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow}a=b=c\Rightarrowđpcm}\)

Bình luận (0)
 Khách vãng lai đã xóa