Những câu hỏi liên quan
H24
Xem chi tiết
H24
17 tháng 7 2017 lúc 9:53

bài 1

coi bậc 2 với ẩn x tham số y D(x) phải chính phường

<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2

=> -8y^2 +1 =k^2 => y =0

với y =0 => x =-1 và -2

Bình luận (0)
H24
17 tháng 7 2017 lúc 8:09

1)

f(x) =x^2 -(2y -3)x +2y^2 -3y+2 =0
cần x nguyên
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
<=> 4y^2 -12y +9 -8y^2 +12y -8 =k^2
<=> -4y^2 +1 =k^2
<=> k^2 +4y^2 =1
=> y=0
với y =0 => x =-1 ; x =-2
kết luận
(x,y) =(-1;0) ; (-2;0)

2)

<=> y(xy^2 +y+4x) =6
xét g(y) =xy^2 +y+4x phải nguyên
=> $\Delta$ (y) =1 -16x^2 =k^2
k^2 +16x^2 =1
x nguyên => x =0 duy nhất
với x = 0
f(y) = y^2 =6 => vô nghiệm nguyên

Bình luận (0)
H24
17 tháng 7 2017 lúc 9:47

<=> y(xy^2 +y+4x) =16
hệ nghiệm nguyên
y ={-16, -8,-4,-2,-1 ,1 ,2 ,4,8,16} (1)
xy^2 +y+4x ={-1,-2,-4,-8,-16,16,8,4,2, 1} (2)

từ (2) <=>xy^2 +y+4x =a
với a ={-1,-2,-4,-8,-16,16,8,4,2,1} tương ứng y ={-16, -8,-4,-2,-1 ,1 ,2 ,4,8,16}

x =`$\frac{a-y}{y^2 +4}$`
a-y = { 15 , 6, 0, -6,-15,15, 6, 0, -6,-15 }
y^2 +4 = { 260,68, 20, 8, 5, 5, 8,20, 68,260 }

a-y=0 hoặc cần |a-y| >= y^2 +4
=> có các giá tri x nguyên
x ={0, -3,3,0}
y ={-4,-1,1,4}
kết luận nghiệm
(x,y) =(0,-4) ; (-3;-1) ;(3;1); (0;4)

Bình luận (0)
H24
Xem chi tiết
DD
17 tháng 11 2017 lúc 20:21

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin Wrecking Ball nhận xét

Bình luận (0)
H24
17 tháng 11 2017 lúc 20:22

Đỗ Đức Đạt cop trên Yahoo

Bình luận (0)
XT
17 tháng 11 2017 lúc 20:23

1...Chia cả hai vế cho xyz ta được 
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz 
<=>3/x + 3/y + 3/z = 4 
<=>1/x + 1/y + 1/z = 4/3 
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z 
+nếu x>=4=> y>=4;z>=4 
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm 
+nếu x=1 => 1+1/y+1/z=4/3 
<=> 1/y+1/z=1/3 
<=> 3(y+z)=yz 
<=> 3y+3z-yz=0 
<=> 3y-yz+3z-9=-9 
<=> y(3-z)-3(3-z)=-9 
<=> (3-z)(3-y)=9 
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương 
mà 9=3*3=1*9=9*1 
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương) 
+nếu x=2 => 1/2+1/y+1/z=4/3 
<=> 1/y+1/z=5/6 
<=> 6(y+z)=5yz 
<=> 6y+6z-5yz=0 
<=> 30y-25yz+30z-36=-36 
<=> 5y(6-5z)-6(6-5z)=-36 
<=> (5z-6)(5y-6)=36 
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương 
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4 
Giải tương tự phần trên ta được 
y=2,z=3 hoặc y=3,z=2 
+nếu x=3 => 1/3+1/y+1/z=4/3 
<=> 1/y+1/z=1 
Giải tương tự phần trên ta được y=z=2 
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)

MK cop nhưng ủng hộ mk nha , mk có lòng trả lời

Bình luận (0)
PV
Xem chi tiết
H24
Xem chi tiết
LK
Xem chi tiết
LT
5 tháng 12 lúc 21:55

2) Ta có: 

xy2 + 2xy -243y +x = 0

 x( y2 + 2y + 1) -243y = 0

 x(y+1)2 = 243y

 x = 243y(y+1)2

Vì x thuộc Z nên 243y(y+1)2 thuộc Z, mà Ư CLN(y,y+1) = 1  243 chia hết (y+1)2 

 (y+1)2 thuộc {9; 81}

 y+1 thuộc {3; -3; 9; -9}

 y thuộc {2; -4; 8; -10}

 x thuộc {54; -108; 24; -30}

Vậy (x; y) = (54; 2) (24; 8) (-108;-4) (-30;-10)

 

Bình luận (0)
MP
Xem chi tiết
NL
7 tháng 1 2021 lúc 15:57

\(5x^2+2\left(3y+1\right)x+2y^2+2y-73=0\) (1)

\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-73\right)=-y^2-4y+366\)

\(\Delta'\) là số chính phương \(\Rightarrow-y^2-4y+366=k^2\)

\(\Leftrightarrow\left(y+2\right)^2+k^2=370=3^2+19^2=9^2+17^2\)

\(\Rightarrow\left[{}\begin{matrix}y+2=3\\y+2=19\\y+2=9\\y+2=17\end{matrix}\right.\) thế vào (1) tìm x nguyên dương

Bình luận (4)
VA
Xem chi tiết
CH
22 tháng 9 2017 lúc 11:03

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).

Bình luận (0)
VH
Xem chi tiết
PD
27 tháng 3 2021 lúc 13:39

\(x^2+x+xy-2y^2-y=5\)

\(\Leftrightarrow2x^2+2x+2xy-4y^2-2y=10\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)+\left(x^2+2xy+y^2\right)\)\(-4y^2=10\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2+\left(x+y\right)^2-4y^2=10\)

\(\Leftrightarrow\left[\left(x+1\right)^2-4y^2\right]+\left[\left(x+y\right)^2-\left(y+1\right)^2\right]=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1\right)+\left(x-1\right)\left(x+2y+1\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1+x-1\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(2x-2y\right)=10\)

\(\Leftrightarrow2\left(x+2y+1\right)\left(x-y\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-y\right)=5\)

Vì \(x,y>0\left(x,y\inℤ\right)\Rightarrow x+2y+1\inℤ^+\)

Mà \(\left(x+2y+1\right)\left(x-y\right)=5\)

Do đó \(\left(x-y\right)\inℤ^+\)

Vì \(x+2y+1\ge x-y>0\)(vì \(x;y\in Z^+\))

\(\Rightarrow\left(x+2y+1\right)\left(x-y\right)=5.1\)

\(\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x=y+1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y+1+2y+1=5\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}3y+2=5\\x=y+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3y=3\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)(thỏa mãn \(x,y\inℤ^+\))

Vậy phương trình có nghiệm nguyên dương \(\left(x;y\right)=\left(2;1\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
PD
27 tháng 3 2021 lúc 13:40

Lưu ý : tớ ghi \(ℤ^+\)là chỉ số nguyên dương, ghi vào vở bạn nên ghi là "số nguyen dương" thôi.

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
6 tháng 3 2021 lúc 20:57

\(\Leftrightarrow\left(2x^2-3\right)y=x^2+1\)

\(\Leftrightarrow y=\dfrac{x^2+1}{2x^2-3}\)

\(y\in Z\Rightarrow2y\in Z\Rightarrow\dfrac{2x^2+2}{2x^2-3}\in Z\Rightarrow1+\dfrac{5}{2x^2-3}\in Z\)

\(\Rightarrow2x^2-3=Ư\left(5\right)=\left\{-1;1;5\right\}\)

\(\Rightarrow x^2=\left\{1;2;4\right\}\Rightarrow x=\left\{1;2\right\}\)

- Với \(x=1\Rightarrow y=-2< 0\left(loại\right)\)

- Với \(x=2\Rightarrow y=1\)

Vậy \(\left(x;y\right)=\left(2;1\right)\)

Bình luận (0)