x3+ax2-ax-4=0
a)Biết phương trình có nghiệm là x=-2
b)Tìm các nghiệm còn lại của phương trình
x3+ax2-ax-4=0
a)Biết phương trình có nghiệm là x=-2
b)Tìm các nghiệm còn lại của phương trình
các cao nhân giúp em vs ạ
a: Thay x=-2 vào pt, ta được:
\(-8+4a+2a-4=0\)
=>6a-12=0
hay a=2
Vậy: Pt là \(x^3+2x^2-2x-4=0\)
b: \(x^3+2x^2-2x-4=0\)
\(\Leftrightarrow x^2\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2\right)=0\)
hay \(x\in\left\{-2;\sqrt{2};-\sqrt{2}\right\}\)
câu 3 : Biết x=-2 là một trong các tập nghiệm của phương trình :x^3 +ax2-4x-4=0
a/ xác định giá trị của a,
b/ với a tìm đc ở câu a, tìm các nghiệm còn lại của pt bằng cách đưa phương trình dã cho về dạng phương trình tích
a: Thay x=-2 vào pt,ta được:
-8+4a+8-4=0
=>4a-4=0
hay a=1
b: Pt sẽ là \(x^3+x^2-4x-4=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
=>(x+1)(x-2)(x+2)=0
hay \(x\in\left\{-1;2;-2\right\}\)
Biết x = - 2 là một trong các nghiệm của phương trình: x 3 + a x 2 - 4 x - 4 = 0 . Với a tìm được ở câu a, tìm các nghiêm còn lại của phương trình bằng cách đưa phương trình đã cho về dạng phương trình tích.
Với a = 1, ta có phương trình: x 3 + a x 2 - 4 x - 4 = 0
⇒ x 2 (x + 1) – 4(x + 1) = 0 ⇒ ( x 2 – 4)(x + 1) = 0
⇒ (x + 2)(x – 2)(x + 1) = 0
⇒ x + 2 = 0 hoặc x – 2 = 0 hoặc x + 1 = 0
x + 2 = 0 ⇒ x = -2
x – 2 = 0 ⇒ x = 2
x + 1 = 0 ⇒ x = -1
Vậy phương trình có nghiệm: x = -2 hoặc x = 2 hoặc x = -1.
Cho phương trình x² + (m+1)x + m = 0
a) Giải phương trình với m = 2
b) Chứng minh phương trình luôn có nghiệm với mọi m
c) Tìm điều kiện m để phương trình có một nghiệm x=1 và tìm nghiệm còn lại
a, bạn tự giải
b, \(\Delta=\left(m+1\right)^2-4m=\left(m-1\right)^2\ge0\)
Vậy pt luôn có 2 nghiệm x1 ; x2
c, Thay x = 1 ta được \(1+m+1+m=0\Leftrightarrow2m+2=0\Leftrightarrow m=-1\)
Thay m = -1 vào ta được \(x^2-1=0\Leftrightarrow x=1;x=-1\)
hay nghiệm còn lại là -1
biết x=√3 là một nghiệm của phương trình x3+ax2+bx+c=0 a,b thuộc Q . Tìm các nghiệm còn lại
=> \(x-\sqrt{3}=0\)
lập phương lên là ra a,b,c
thay x = căn 3 vào,,,,nhóm tất cả các căn 3 sang 1 nhóm rồi biện luận
Cho phương trình : x2 - (m + 4)x + 4m = 0
a/ Tìm m để phương trình có một nghiệm là 2 . Tìm nghiệm còn lại của phương trình .
b/ Tìm m để phương trình đã cho có 2 nghiệm phân biệt x1, x2 thỏa mãn :
x12 + (m + 4)x2 = 16
\(x^2-\left(m+4\right)x+4m=0\) (1)
a)Thay x=2 vào pt (1) ta được: \(4-\left(m+4\right).2+4m=0\) \(\Leftrightarrow m=2\)
Thay m=2 vào pt (1) ta được: \(x^2-6x+8=0\)\(\Leftrightarrow x^2-4x-2x+8=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy nghiệm còn lại là 4
b)Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\Leftrightarrow m^2-8m+16>0\)\(\Leftrightarrow\left(m-4\right)^2>0\)\(\Leftrightarrow m\ne4\)
Do x1 là một nghiệm của pt \(\Rightarrow x_1^2-\left(m+4\right)x_1+4m=0\)
\(\Rightarrow x_1^2=\left(m+4\right)x_1-4m=0\)
Theo viet có: \(x_1+x_2=m+4\)
\(x_1^2+\left(m+4\right)x_2=16\)
\(\Leftrightarrow\left(m+4\right)x_1-4m+\left(m+4\right)x_2=16\)
\(\Leftrightarrow\left(m+4\right)\left(x_1+x_2\right)-4m-16=0\)
\(\Leftrightarrow\left(m+4\right)^2-4m-16=0\)
\(\Leftrightarrow m^2+4m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-4\end{matrix}\right.\)(Thỏa)
Vậy...
cho phương trình có tham số:x2-2x+m+2=0
a)giải phương trình khi m = -2
b) tìm m để phương trình luôn có mộ nghiệm x = -1 Tìm nghiệm còn lại
c) Tìm m để phương trình có 2 nghiệm phân biệt
a: Khi m=-2 thì phương trình sẽ là:
x^2-2x=0
=>x=0 hoặc x=2
b: Khi x=-1 thì phương trình sẽ là:
(-1)^2+2+m+2=0
=>m+5=0
=>m=-5
x1+x2=2
=>x2=2+1=3
c: Δ=(-2)^2-4(m+2)
=4-4m-8=-4m-4
Để PT có hai nghiệm phân biệt thì -4m-4>=0
=>m<=-1
Cho phương trình (ẩn x): \(x^3+ax^2-4x-4=0\)
a, Xác định m để phương trình có một nghiệm x=1
b, Với giá trị m vừa tìm được , tìm các nghiệm còn lại của phương trình
Biết x = - 2 là một trong các nghiệm của phương trình: x 3 + a x 2 - 4 x - 4 = 0 . Xác định giá trị của a.
Thay x = -2 vào phương trình x 3 + a x 2 - 4 x - 4 = 0 , ta có:
- 2 3 + a - 2 2 – 4(-2) – 4 = 0
⇒ -8 + 4a + 8 – 4 = 0 ⇒ 4a – 4 = 0 ⇒ a = 1
Vậy a = 1.