Những câu hỏi liên quan
H24
Xem chi tiết
NP
Xem chi tiết
KN
11 tháng 4 2022 lúc 11:07

T=4/1 . 4/3 + 4/3 . 4/5 + ... + 4/99 . 4/100

T=4/1 - 4/3 + 4/3 - 4/5 + ... + 4/99 - 4/100

T=4/1 - 4/100

T=99/25

Bình luận (0)
QN
11 tháng 4 2022 lúc 11:11

undefined

Bình luận (1)
BT
Xem chi tiết
HV
23 tháng 3 2022 lúc 13:06

 = \(\dfrac{5}{2}(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2019}-\dfrac{1}{2021})\)

 = \(\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)

 = \(\dfrac{5}{2}.\dfrac{100}{101}\)

 = \(\dfrac{250}{101}\)

 

Bình luận (0)
NB
Xem chi tiết
LB
15 tháng 11 2017 lúc 19:23

\(A=\dfrac{1}{2}+\dfrac{3-2}{3.2}+\dfrac{4-3}{3.4}+...+\dfrac{100-99}{100.99}\)

\(A=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=1-\dfrac{1}{100}\)

\(A=\dfrac{99}{100}\)

Bình luận (0)
LB
15 tháng 11 2017 lúc 19:30

\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+....+\dfrac{2}{2007.2009}+\dfrac{2}{2009..2011}\)

\(2B=\dfrac{3-1}{1.3}+\dfrac{5-3}{3,5}+...+\dfrac{2009-2007}{2009.2007}+\dfrac{2011-2009}{2011.2009}\)

\(2B=\dfrac{3}{3}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2007}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2011}\)

\(2B=1-\dfrac{1}{2011}\)

\(2B=\dfrac{2010}{2011}\)

\(B=\dfrac{2010}{4022}\)

Bình luận (0)
NT
Xem chi tiết
NT
6 tháng 5 2018 lúc 18:24

A=2.(1/1.3 + 1/3.5 + 1/5.7 +.......+1/99.101)

=2.(1/1 + 1/3 + 1/5 + 1/5 + 1/7 +...+1/99 + 1/101)

=2.(1-1/101)

=2.(101/101-1/101)

=2.100/101

200/101

Bình luận (0)
NT
6 tháng 5 2018 lúc 18:28

B=2.(1/1.3+1/3.5+1/3.1+....+1/99.101)

=2.(1/1+1/3+1/3+1/5+1/3+1/7+....+1/99+1/101)

=2.(1/1+1/101)

=2.(101/101+1/101)

=2.102/101

=204/101

Bình luận (0)
NT
6 tháng 5 2018 lúc 18:30

C=1/2+1/3+1/3+1/4+....+1/99+1/100

=1/2+1/100

=50/100+1/100

=51/100

Bình luận (0)
HD
Xem chi tiết
MS
11 tháng 7 2017 lúc 9:06

\(A=\dfrac{2^2}{1.3}+\dfrac{3^2}{2.4}+\dfrac{4^2}{3.5}+\dfrac{5^2}{4.6}+\dfrac{6^2}{5.7}\)

\(A=\dfrac{2.2.3.3.4.4.5.5.6.6}{1.3.2.4.3.5.4.6.5.7}\)

\(A=\dfrac{2.3.4.5.6}{1.2.3.4.5}.\dfrac{2.3.4.5.6}{3.4.5.6.7}\)

\(A=\dfrac{6}{1}.\dfrac{2}{7}=\dfrac{12}{7}\)

\(B=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)\left(1+\dfrac{1}{9.11}\right)\)

\(B=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{100}{99}\)

\(B=\dfrac{4.9.16.100}{3.8.15.99}\)

\(B=\dfrac{2.2.3.3.4.4.10.10}{1.3.2.4.3.5.9.11}\)

\(B=\dfrac{2.3.4.10}{1.2.3.9}.\dfrac{2.3.4.10}{3.4.5.11}\)

\(B=10.\dfrac{2}{11}=\dfrac{20}{11}\)

Bình luận (0)
CH
Xem chi tiết
NH
3 tháng 3 2017 lúc 12:57

2/ = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +......+\(\dfrac{1}{100.101}\)

= 1-\(\dfrac{1}{2}\) +\(\dfrac{1}{2}\) -\(\dfrac{1}{3}\)+.........+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\)

=1-\(\dfrac{1}{101}\)=...........

mk làm vậy thôi nha

thông cảm

leuleuyeu

Bình luận (2)
LL
2 tháng 3 2017 lúc 22:16

=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{4.5}\)=\(1-\dfrac{1}{2}+....+\dfrac{1}{4}-\dfrac{1}{5}\)

=1-\(\dfrac{1}{5}=\dfrac{4}{5}\)

tương tự

Bình luận (0)
HT
22 tháng 3 2017 lúc 19:47

Đại số lớp 6Đại số lớp 6

Bình luận (0)
TH
Xem chi tiết
LL
8 tháng 10 2021 lúc 22:03

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}.\dfrac{100}{101}=\dfrac{50}{101}\)

Bình luận (0)
TH
Xem chi tiết
LA
9 tháng 5 2023 lúc 20:01

\(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{201\cdot203}\)

\(\dfrac{5}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{201\cdot203}\right)\)

\(\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{201}-\dfrac{1}{203}\right)\)

\(\dfrac{5}{2}\left(1-\dfrac{1}{203}\right)\)

\(\dfrac{5}{2}\cdot\dfrac{202}{203}=\dfrac{505}{203}\)

Bình luận (0)
TA
9 tháng 5 2023 lúc 20:03

Ta có :

  \(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+...+\dfrac{5}{201.203}\)

\(=\dfrac{5}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{201.203}\right)\)

\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-...+\dfrac{1}{201}-\dfrac{1}{203}\right)\)

\(=\dfrac{5}{2}\left(1-\dfrac{1}{203}\right)\)

\(=\dfrac{5}{2}.\dfrac{202}{203}\)

\(=\dfrac{505}{203}\)

Bình luận (0)