( 2x - 1 )2 + 17 = 18
Bài 2. Tìm x, biết :
a) 3x – 15 = 25 – 5x b) 3x - 17 = 2x – 7 c) 2x – 17 = – (3x – 18)
d) 3x – 14 = 2(x – 9) + 1 e) f) (x – 5)2 = 9
a) 3x – 15 = 25 – 5x
=> 3x + 5x = 25 + 15
=> 8x = 40
=> x = 5
b) 3x - 17 = 2x – 7
=> 3x - 2x = -7 + 17
=> x = 10
c) 2x – 17 = – (3x – 18)
=> 2x - 17 = -3x + 18
=> 2x + 3x = 18 + 17
=> 5x = 35
=> x = 7
d) 3x – 14 = 2(x – 9) + 1
=> 3x - 14 = 2x - 18 + 1
=> 3x - 2x = -18 + 1 + 14
=> x = -3
f) (x – 5)2 = 9
\(\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
a) Ta có: \(3x-15=25-5x\)
\(\Leftrightarrow3x-15-25+5x=0\)
\(\Leftrightarrow8x-40=0\)
\(\Leftrightarrow8x=40\)
hay x=5
Vậy: x=5
b) Ta có: \(3x-17=2x-7\)
\(\Leftrightarrow3x-17-2x+7=0\)
\(\Leftrightarrow x-10=0\)
hay x=10
Vậy: x=10
c) Ta có: \(2x-17=-\left(3x-18\right)\)
\(\Leftrightarrow2x-17=-3x+18\)
\(\Leftrightarrow2x-17+3x-18=0\)
\(\Leftrightarrow5x-35=0\)
\(\Leftrightarrow5x=35\)
hay x=7
Vậy: x=7
d) Ta có: \(3x-14=2\left(x-9\right)+1\)
\(\Leftrightarrow3x-14=2x-18+1\)
\(\Leftrightarrow3x-14-2x+18-1=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy: x=-3
f) Ta có: \(\left(x-5\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{2;8\right\}\)
Bài 2. Tìm x, biết :
a) \(3x-15=25-5x\)
\(\Leftrightarrow8x=40\)
\(\Leftrightarrow x=5\)
Vậy x = 5
b) \(3x-17=2x-7\)
\(\Leftrightarrow x=10\)
Vậy x = 10
c) \(2x-17=-\left(3x-18\right)\)
\(\Leftrightarrow2x-17=18-3x\)
\(\Leftrightarrow5x=35\)
\(\Leftrightarrow x=7\)
Vậy x = 7
d) \(3x-14=2\left(x-9\right)+1\)
\(\Leftrightarrow3x-14=2x-18+1\)
\(\Leftrightarrow3x-14=2x-17\)
\(\Leftrightarrow x=-3\)
Vậy x = -3
e) \(\left(x-5\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Vậy x = {8; 2}
1)(x-2)(x+1)=0
2)(3-x)x=0
3)2x-17=-(3x-18)
1) Ta có: \(\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy \(x=2\) hoặc \(x=-1\)
2) Ta có: \(\left(3-x\right)x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3-x=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=0\)
3) Ta có: \(2x-17=-\left(3x-18\right)\)
\(\Leftrightarrow2x-17=18-3x\)
\(\Leftrightarrow2x+3x=18+17\)
\(\Leftrightarrow5x=35\Leftrightarrow x=\dfrac{35}{5}=7\)
Vậy \(x=7\)
(1)X1=2 và X2=-2
(2)X1=3 và X2=0
(3) X=7
Tìm số nguyên x, biết:
1) -16 + 23 + x = - 16
2) 2x – 35 = 15
3) 3x + 17 = 12
4) (2x – 5) + 17 = 6
5) 10 – 2(4 – 3x) = -4
6) - 12 + 3(-x + 7) = -18
Tìm số nguyên x, biết:
1) -16 + 23 + x = - 16
7+x=-16
x=-16-7
x=-23
2) 2x – 35 = 15
2x=15+35
2x=50
x=50:2
x=25
3) 3x + 17 = 12
3x=12-17
3x=-5
x=-5/3
4) (2x – 5) + 17 = 6
2x-5=6-17
2x-5=-11
2x=-11+5
2x=-6
x=-6:2
x=-3
5) 10 – 2(4 – 3x) = -4
2(4-3x)=10-(-4)
2(4-3x)=14
4-3x=14:2
4-3x=7
3x=4-7
3x=-3
x=-3:3
x=-1
6) - 12 + 3(-x + 7) = -18
3(-x+7)=-18-(-12)
3(x+7)=-6
x+7=-6:3
x+7=-2
x=-2-7
x=-9
tự đi mà làm
6x (3x+5) - 2x (3x-2) + (17-x) (x-1) + x (x-18) =0
Ta có: \(6x\left(3x+5\right)-2x\left(3x-2\right)+\left(17-x\right)\left(x-1\right)+x\left(x-18\right)=0\)
\(\Leftrightarrow18x^2+30x-6x^2+4x+17x-17-x^2+x+x^2-18x=0\)
\(\Leftrightarrow12x^2-34x-17=0\)
\(\Leftrightarrow12\left(x^2-\frac{34}{12}x-\frac{17}{12}\right)=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{17}{12}+\frac{289}{144}-\frac{493}{144}=0\)
\(\Leftrightarrow\left(x-\frac{17}{12}\right)^2=\frac{493}{144}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{17}{12}=\frac{\sqrt{493}}{12}\\x-\frac{17}{12}=-\frac{\sqrt{493}}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{17+\sqrt{493}}{12}\\x=\frac{17-\sqrt{493}}{12}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{17+\sqrt{493}}{12};\frac{17-\sqrt{493}}{12}\right\}\)
CM các bất phương trình sau luôn dương vs mọi x
1)2x2-2x+17>0
2)-x2+6x-18<0
3)|x-1|+|x|+2>1
BPT thì làm sao gọi là luôn dương hả bạn? Đề phải là CMR các BPT sau luôn đúng với mọi $x$.
1.
Ta có: $2x^2-2x+17=x^2+(x^2-2x+1)+16=x^2+(x-1)^2+16\geq 16>0$ với mọi $x\in\mathbb{R}$
Do đó BPT luôn đúng với mọi $x$
2.
$-x^2+6x-18=-(x^2-6x+18)=-[(x^2-6x+9)+9]=-[(x-3)^2+9]$
$=-9-(x-3)^2\leq -9<0$ với mọi $x\in\mathbb{R}$
Vậy BPT luôn đúng với mọi $x$
3.
$|x-1|+|x|+2\geq 0+0+2=2>1$ với mọi $x\in\mathbb{R}$
Do đó BPT luôn đúng với mọi $x$
Tìm x, bết:
6x (3x+5) - 2x (3x-2) + (17-x) (x-1) + x (x-18) =0
6x(3x + 5) - 2x(3x - 2) + (17 - x)(x - 1) + x(x - 18) = 0
=> (18x2 - 6x2 - x2 + x2) + (30x + 4x - 16x - 18x) - 17 = 0
=> 12x2 - 17 = 0
=> 12x2 = 17
=> x2 = 17/12
=> \(\orbr{\begin{cases}x=\sqrt{\frac{17}{12}}\\x=-\sqrt{\frac{17}{12}}\end{cases}}\)
\(6x\left(3x+5\right)-2x\left(3x-2\right)+\left(17-x\right)\left(x-1\right)+x\left(x-18\right)=0\)
\(\Leftrightarrow9x^2+30x-6x^2+4x+17x-17-x^2+x+x^2-18x=0\)
\(\Leftrightarrow3x^2+34x-17=0\) ( vô nghiệm )
6x( 3x + 5 ) - 2x( 3x - 2 ) + ( 17 - x )( x - 1 ) + x( x - 18 ) = 0
<=> 18x2 + 30x - 6x2 + 4x - x2 + 18x - 17 + x2 - 18x = 0
<=> 12x2 + 34x - 17 = 0
\(\Delta'=b'^2-ac=\left(\frac{b}{2}\right)^2-ac=\left(\frac{34}{2}\right)^2-12\cdot\left(-17\right)=289+204=493\)( không muốn xài Delta nữa đâu nhưng ... :)) )
\(\Delta'>0\)nên phương trình đã cho có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-17+\sqrt{493}}{12}\\x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-17-\sqrt{493}}{12}\end{cases}}\)
Vậy ...
Tìm x
a) 6x(3x+5)-2x(9x-2)+(17-x)(x-1)+x(x-18)=0
b) (15 - 2 x) (4x + 1) - ( 13- 4x) ( 2x - 3 ) - ( x-1 ) ( x+2 )+x2=52
a) Ta có : 6x(3x + 5) - 2x(9x - 2) + (17 - x)(x - 1) + x(x - 18) = 0
<=> 18x2 + 30x - 18x2 + 4x + 17x - 17 - x2 + x + x2 - 18x = 0
<=> 34x - 17 = 0
<=> 34x = 17
=> x = 2
[1/18+2/17+.......18/1+18] : [1/18+1/17+...+1/1]
Đặt A = \(\frac{\frac{1}{18}+\frac{2}{17}+....+\frac{18}{1}+18}{\frac{1}{18}+\frac{1}{17}+....+\frac{1}{1}}\)
Xét TS (tử số) của A ta có:
TS = \(\frac{1}{18}+\frac{2}{17}+...+\frac{18}{1}+18\)
\(TS=\left(\frac{1}{18}+1\right)+\left(\frac{2}{17}+1\right)+...+\left(\frac{18}{1}+1\right)\) (chia 18 ra 18 phần 1 đơn vị cộng lại cho mỗi phân số)
\(TS=\frac{19}{18}+\frac{19}{17}+...+\frac{19}{1}=19.\left(\frac{1}{18}+\frac{1}{17}+...+\frac{1}{1}\right)\)
Thay lại TS vào A ta có:
\(A=\frac{19.\left(\frac{1}{18}+\frac{1}{17}+...+\frac{1}{1}\right)}{\left(\frac{1}{18}+\frac{1}{17}+...+\frac{1}{1}\right)}=19\)
tìm x biết
a) (6x-3) (2x+4) + (4x-1) (5-3x) = -21
b) 6x (3x+5) - 2x (9x-2) + (17-x) (x-1) + x (x-18) =0
c) (15-2x) (4x+1) - (13-4x) (2x-3) - (x-1) (x+2) + x2=52
d) (8x-3) (3x+2) - (4x+7) (x+4) = (2x+1) (5x-1) - 33
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
a) ( 6x - 3 ) ( 2x + 4 ) + ( 4x - 1 ) ( 5 - 3x ) = -21
<=> 12x2 + 24x - 6x - 12 + 20x - 12x2 - 5 + 3x = -21
<=> 41x = -21 + 12 + 5
<=> 41x = -4
<=> x = -4/41