Cho x2-y2-z2=0
C/m (5x-3y+4z).(5x-3y-4z)=(3x-5y)2
1)Cmr nếu a-b=1 thì (a+b)(a2+b2)(a4+b4)...(a32+b32) =a64-b64
2) Cho x2=y2+z2. CM (5x-3y+4z)(5x-3y-4z)=(3x-5y)2
1) Ta có: \(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\cdot...\cdot\left(a^{32}+b^{32}\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\cdot...\cdot\left(a^{32}+b^{32}\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\cdot...\cdot\left(a^{32}+b^{32}\right)\)
\(=\left(a^4-b^4\right)\left(a^4+b^4\right)\cdot...\cdot\left(a^{32}+b^{32}\right)\)
\(=\left(a^8-b^8\right)\left(a^8+b^8\right)\left(a^{16}+b^{16}\right)\left(a^{32}+b^{32}\right)\)
\(=\left(a^{16}-b^{16}\right)\left(a^{16}+b^{16}\right)\left(a^{32}+b^{32}\right)\)
\(=\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)\)
\(=a^{64}-b^{64}\)
CMR: (5x-3y+4z)(5x-3y-4z)=(3x-5y)^2
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-\left(4z\right)^2\)
\(=\left(3x-5y\right)^2-16z^2\)
Đẳng thức chỉ đúng khi \(z=0\)
Ta có:
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)\)
\(=\left(5x-3y\right)^2-16z^2\)
\(=25x^2-30xy+9y^2-16z^2\left(#\right)\)
Vì \(x^2=y^2+z^2\Rightarrow\left(#\right)=25x^2-30xy+9y^2-16\left(x^2-y^2\right)=\left(3x-5y\right)^2\)
cho x^2-y^2-z^2=0 chứng minh rằng: (5x-3y+4z)*(5x-3y-4z)=(3x-5y)^2
Cho (5x-3y+4z).(5x-3y-4z)=(3x-5y)^2
CMR: x^2=y^2+z^2
Ta có \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)
\(\Leftrightarrow\left(5x-3y\right)^2-\left(4z\right)^2=\left(3x-5y\right)^2\)
\(\Leftrightarrow25x^2-30xy+9y^2-16z^2=9x^2-30xy+25y^2\)
\(\Leftrightarrow16x^2=16y^2+16z^2\Leftrightarrow x^2=y^2+z^2\)
(5x - 3y + 4z) . (5x - 3y - 4z) = (3x - 5y)2
(5x - 3y)2 - 16z2 = (3x - 5y)2
25x2 - 2.5x.3y + 9y2 - 16z2 = 9x2 - 2.3x.5y + 25y2
16x2 + 9y2 - 16z2 - 25y2 = 0
16x2 - 16y2 - 16z2 = 0
x2 - y2 - z2 = 0
x2 = y2 + z2
cho x2 - y2 -z2 = 0
c/m ( 5x -3y + 4z) nhân ( 5x - 3y - 4z ) = ( 3x - 5y)2
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3z-5y\right)^2\)
\(\Leftrightarrow\left(5x-3y\right)^2-\left(4z\right)^2=\left(3x-5y\right)^2\)
\(\Leftrightarrow25x^2-30xy+9y^2-16z^2=9x^2-30xy+25y^2\)
\(\Leftrightarrow16x^2-16y^2-16z^2=0\)
\(\Leftrightarrow16.\left(x^2-y^2-z^2\right)=0\)
Vì \(x^2-y^2-z^2=0\)
\(\Rightarrow\)\(16x^2-16y^2-16z^2=0\)đúng
\(\Rightarrow\)\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3z-5y\right)^2\)
đpcm
CMR : Nếu x^2 - y^2 - z^2 = 0 thì ( 5x-3y+4z ) . ( 5x-3y - 4z ) = ( 3x - 5y )^2
Vì \(x^2-y^2-z^2=0\Rightarrow x^2-y^2=z^2\)
Biến đổi vế trái ta có :
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-16z^2\)
\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)
\(=25x^2-30xy+9y^2-16x^2+16y^2\)
\(=9x^2-30xy+25y^2\)
\(=\left(3x-5y\right)^2\) ( ĐPCM)
a) cho x^2 = y^2+z^2. chứng minh: (5x-3y+4z)(5x-3y-4z)=(3x-5y)^2
b) cho 10x^2=10y^2+z^2. chứng minh: (7x-3y+2z)(7x-3y-2z)=(3x-7y)^2
Cho x, y, z là độ dài 3 cạnh của 1 tam giác thoả mãn: (5x - 3y + 4z) (5x - 3y - 4z) = (3x - 5y)2. C/m tam giác đó vuông
\(\left(5x-3y-4z\right)\left(5x-3y+4z\right)=\left(3x-5y\right)^2\)
\(\Leftrightarrow\left(5x-3y\right)^2-\left(4z\right)^2-\left(3x-5y\right)^2=0\)
\(\Leftrightarrow25x^2-2.3.5xy+9x^2-16z^2-\left(9x^2-2.3.5xy+25y^2\right)\)
\(\Leftrightarrow16\left(x^2-z^2-y^2\right)=0\Leftrightarrow x^2=y^2+z^2\)
=> x, y, z là độ dài 3 cạnh của một tam giác vuông.
Cho x^2 -y ^2=4z^2 . CMR: (5x-3y+8z)(5x-3y-8z)=(3x-5y)^2
\(x^2-y^2=4z^2\\ \Leftrightarrow64z^2=16x^2-16y^2\)
\(\left(5x-3y+8z\right)\left(5x-3y-8z\right)\\ =\left(5x-3y\right)^2-64z^2\\ =25x^2-30xy+9y^2-64z^2\\ =25x^2-16x^2+9y^2+16y^2-30xy\\ =9x^2-30xy+25y^2=\left(3x-5y\right)^2\)