Tìm y biết (y-7)y+3-(y-7)y+9=0
Bài 4 : Tìm y , biết :
a) y ( 2y - 7 ) - 4y + 14 = 0
b) ( y + 3 )( y2 - 3y + 9 ) - y( y2 - 3 ) = 18
tìm các số nguyên x và y biết a, 4/x = y/21=28/49 b, x/7 = 9/y và x>y c, x/15 = 3/y và x < y < 0 d, x/y = 21/28
a: =>4/x=y/21=4/7
=>x=7; y=21*4/7=12
b: x/7=9/y
=>xy=63
mà x>y
nên \(\left(x,y\right)\in\left\{\left(63;1\right);\left(21;3\right);\left(9;7\right);\left(-7;-9\right);\left(-3;-21\right);\left(-1;-63\right)\right\}\)
c: x/15=3/y
=>xy=45
mà x<y<0
nên \(\left(x,y\right)\in\left\{\left(-45;-1\right);\left(-15;-3\right);\left(-9;-5\right)\right\}\)
d: x/y=21/28=3/4
=>x/3=y/4=k
=>x=3k; y=4k(k\(\in Z\))
Tìm x,y biết:
a)(25-y^2)-8(x-2009)=0
b)x^3 y=xy^3+1997
c)x+y+9=xy-7
a) 25 - y2= 8.(x -2009)2
Do 8.(x-2009)2 không âm với mọi x nên 25 - y^2 không âm nên y^2 nhỏ hơn hoặc bằng 25
TH1: y = 0 thay vào phương trình thì x không thuộc Z (loại)
TH2: y = +-1 thay vào phương trình thì x không thuộc Z ( loại)
TH3: y = +-2 thay vào phương trình thì x không thuộc Z loại
chỉ thử đến y=+- 5 để thỏa mãn y2 nhỏ hơn hoặc bằng 25
Cuối cùng ta được y = +- 5 và x = 2009
b, x3.y=x.y3+1997x3.y=x.y3+1997
⇔x3.y−x.y3=1997⇔x3.y−x.y3=1997
Ta có: -1997 là số nguyên tố
-xy(x+y)(x-y) là hợp số
Bài 1: Tìm số nguyên χ biết:
a) (χ+3)(χ+2)=0
b) (7-3χ)3=(-8)
Bài 2: Tìm tất cả các số nguyên x;y;z;t biết:
|x+y+z+9|=|y+z+t+6|=|z+t+x-9|=|t+x+y-6|=0
Bài 3: Tìm ba cặp số nguyên (a;b) sao cho 20a+10b=2010
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
Bài 3
20a + 10b = 2010
10b = 2010 - 20a
b = (2010 - 20a) : 10
*) a = 0
b = (2010 - 20.0) : 10 = 201
*) a = 1
b = (2010 - 10.1) : 10 = 200
*) a = 2
b = (2010 - 10.2) : 10 = 199
Vậy ta có ba cặp số nguyên (a; b) thỏa mãn:
(0; 201); (1; 200); (2; 199)
tìm y biết : 2 . y - 12 .y = 0
tìm y biết( y - 7) . ( y - 8) =0
tìm x biết : x + x.2+x.3+....+x.10=165
a) 2y - 12y = 0
\(\Rightarrow\) y ( 2-12) = 0
\(\Rightarrow\) y . (-10) =0
\(\Rightarrow\) y = 0 : (-10) = 0
b) (y-7)(y-8) = 0
\(\Rightarrow\orbr{\begin{cases}y-7=0\\y-8=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0+7\\y=0+8\end{cases}\Rightarrow}\orbr{\begin{cases}y=7\\y=8\end{cases}}}\)
c) x + x.2+x.3+x.4+...+x.10 = 165
\(\Rightarrow\) x ( 1+2+3+.....+8+9+10) = 165
\(\Rightarrow\)x . \(\frac{\left(1+10\right).10}{2}\)=165
\(\Rightarrow\) x . 55 = 165
\(\Rightarrow x=\frac{165}{55}=3\)
Can you k for me ,Lê Thị Kim Chi!
a) \(2y-12y=0\)
\(\Leftrightarrow-10y=0\)
\(\Leftrightarrow y=0:\left(-10\right)\)
\(\Leftrightarrow y=0\)
b) \(\left(y-7\right)\left(y-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-7=0\\y-8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=0+7\\y=0+8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=7\\y=8\end{cases}}\)
c) \(x+x.2+x.3+......+x.10=165\)
\(\Leftrightarrow x.\left(1+2+3+.....+10\right)=165\)
\(\Leftrightarrow x.55=165\)
\(\Leftrightarrow x=165:55\)
\(\Leftrightarrow x=3\)
Tìm y , biết
y + y * 9 : 3 - y * 4 + y * 7 = 105
y + y x 9 : 3 - y x 4 + y x 7 = 105
y x 1 + y x 3 - y x 4 + y x 7 = 105
y x ( 1 + 3 - 4 + 7 ) = 105
y x 7 = 105
y = 105 : 7
y = 15
Vậy y = 15
y+y*9:3-y*4+y*7=105
y+y*3-y*4+y*7=105
y*(1+3-4+7)=105
y*7=105
y=105:7
y=15
Tìm x, y biết:
a)-x/4=-9/x
b)x/4=18/x+1
c)x/6=7/y (x<y<0)
d)-2/x=y/5 (x<0<y)
e)5/x=-y/7 (y>0)
a,\(\frac{-\chi}{4}=\frac{-9}{\chi}\Rightarrow-\chi.\chi=4.\left(-9\right)\)
\(\Rightarrow-2\chi=-36\Rightarrow\chi=-36:\left(-2\right)\)
\(\Rightarrow\chi=18\)
1.Tìm x biết:
a) (x+3).(x- 2)<0
b) (x- 2).(7-x)>0
2.Tìm x, y biết:
a) x.y=-28
b) (2.x-1).(4.y-2)=-42
c) (x+x.y)+y=9
d) x.y- 2.x- 3.y=9
1.a.
\(\left(x+3\right)\left(x-2\right)< 0\)
\(TH1:\hept{\begin{cases}x+3< 0\\x-2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -3\\x>2\end{cases}}\)
\(TH2:\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}}}\)
không biết có đúng không nữa!
Tìm x,y, z biết :
\(\dfrac{x}{y}=\dfrac{9}{7};\dfrac{y}{z}=\dfrac{7}{3}\) và x - y + z = -15
\(\dfrac{x}{y}=\dfrac{9}{7}\)⇒\(\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\)⇒\(\dfrac{y}{7}=\dfrac{z}{3}\)
⇒\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{15}{5}=3\)
⇒\(\left\{{}\begin{matrix}x=3.9=27\\y=3.7=21\\z=3.3=9\end{matrix}\right.\)