Những câu hỏi liên quan
FN
Xem chi tiết
HK
1 tháng 3 2016 lúc 21:03

Để A nhỏ nhất thì \(2+\sqrt{2x-x^2+7}\) lớn nhất => \(\sqrt{2x-x^2+7}\) lớn nhất => 2x - x2 + 7 = -(x2 - 2x - 7) = -(x2 - 2x + 1 - 8) = -(x2 - 2x + 1) + 8 = -(x - 1)2 + 8 lớn nhất => (x - 1)2 bé nhất mà (x - 1)2 bé nhất bằng 0 => x = 1 => Giá trị nhỏ nhất của A là \(\frac{3}{2+\sqrt{6}}\)

Bình luận (0)
PM
1 tháng 3 2016 lúc 22:07

lời giải của Khánh sai
ban đầu phải khẳng định là tử và mẫu luôn dương thì mới đc lập luận là để A đạt GTNN <=> mẫu đạt GTLN
đọc phần bđt ở sách Nâng cao phát triển Toán 9 là sẽ biết

Bình luận (0)
NH
Xem chi tiết
H24
12 tháng 12 2021 lúc 22:28

\(D=\sqrt{\left(x+\sqrt{3}\right)^2}+\sqrt{\left(x-\frac{1}{2}\right)^2}\)

\(D=|x+\sqrt{3}|+|x-\frac{1}{2}|=|x+\sqrt{3}|+|\frac{1}{2}-x|\ge|x+\sqrt{3}+\frac{1}{2}-x|\)

=sqrt(3)+1/2.

Vậy giá trị nhỏ nhất cần tìm là: sqrt(3)+1/2. Dấu bằng thì bạn tham khảo bất đẳng thức:

lal+lbl geq la+bl

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
DH
30 tháng 9 2021 lúc 13:34

Khi \(x=1,44\)\(A=\frac{1,44+7}{\sqrt{1,44}}=\frac{8,44}{1,2}=\frac{211}{30}\)

\(B=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}-1}{\sqrt{x}-3}-\frac{2x-\sqrt{x}-3}{x-9}\)(ĐK: \(x\ge0,x\ne9\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2x-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x-3\sqrt{x}+2x+5\sqrt{x}-3-2x+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(S=\frac{1}{B}+A=\frac{\sqrt{x}-3}{\sqrt{x}}+\frac{x+7}{\sqrt{x}}=\frac{x+\sqrt{x}+4}{\sqrt{x}}=\sqrt{x}+\frac{4}{\sqrt{x}}+1\)

\(\ge2\sqrt{\sqrt{x}.\frac{4}{\sqrt{x}}}+1=5\)

Dấu \(=\)khi \(\sqrt{x}=\frac{4}{\sqrt{x}}\Leftrightarrow x=4\)(thỏa mãn) 

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
NT
24 tháng 8 2021 lúc 15:06

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

Bình luận (0)
TL
Xem chi tiết
NH
Xem chi tiết
LC
Xem chi tiết
NL
6 tháng 11 2021 lúc 14:17

Đặt \(\sqrt{x^2+4}=a\ge2\)

\(\Rightarrow x^2=a^2-4\)

\(\Rightarrow A=\dfrac{2\left(a^2-4\right)+3}{a+2}=\dfrac{2a^2-5}{a+2}=2a-4+\dfrac{3}{a+2}\)

\(A=\dfrac{3\left(a+2\right)}{16}+\dfrac{3}{a+2}+\dfrac{29}{16}a-\dfrac{35}{8}\ge2\sqrt{\dfrac{9\left(a+2\right)}{16\left(a+2\right)}}+\dfrac{29}{16}.2-\dfrac{35}{8}=\dfrac{3}{4}\)

\(A_{min}=\dfrac{3}{4}\) khi \(a=2\Rightarrow x=0\)

Bình luận (1)
ND
Xem chi tiết
NM
11 tháng 4 2018 lúc 19:54
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
Bình luận (0)
HH
5 tháng 6 2020 lúc 23:01

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H9
23 tháng 8 2023 lúc 5:49

a) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\)

\(=\left[-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\cdot\left(\sqrt{2}-\sqrt{5}\right)\)

\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)

\(=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)

\(=-\left(2-5\right)\)

\(=-\left(-3\right)\)

\(=3\)

b) Ta có:

\(x^2-x\sqrt{3}+1\) 

\(=x^2-2\cdot\dfrac{\sqrt{3}}{2}\cdot x+\left(\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)

\(=\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)

Mà: \(\left(x-\dfrac{\sqrt{3}}{2}\right)^2\ge0\forall x\) nên

\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)

Dấu "=" xảy ra:

\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow x=\dfrac{\sqrt{3}}{2}\)

Vậy: GTNN của biểu thức là \(\dfrac{1}{4}\) tại \(x=\dfrac{\sqrt{3}}{2}\)

Bình luận (0)
H24
23 tháng 8 2023 lúc 5:48

a)

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\\ =\left(-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(-\sqrt{2}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}^2-\sqrt{5}^2\right)\\ =-\left(2-5\right)\\ =-\left(-3\right)\\ =3\)

Bình luận (1)