Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TC
27 tháng 2 2022 lúc 14:40

hình đâu bạn

 

Bình luận (0)
SK
27 tháng 2 2022 lúc 14:40

đâu bạn

Bình luận (0)
TA
27 tháng 2 2022 lúc 14:42

hình đâu

Bình luận (0)
H24
Xem chi tiết
PL
Xem chi tiết
BT
20 tháng 2 2022 lúc 15:35

no bé ơi

Bình luận (0)
AH
20 tháng 2 2022 lúc 15:35

Lời giải:

$\frac{1+14x}{5}=\frac{5-3x}{4}$

$\Rightarrow 4(1+14x)=5(5-3x)$

$4+56x=25-15x$

$56x+15x=25-4$

$71x=21$

$x=\frac{21}{71}$

Bình luận (0)
NT
20 tháng 2 2022 lúc 15:35

c, \(\Rightarrow4+56x=25-15x\Leftrightarrow71x=21\Leftrightarrow x=\dfrac{21}{71}\)

Bình luận (0)
PL
Xem chi tiết
N2
19 tháng 2 2022 lúc 12:03

số hs khá là: \(\dfrac{3}{4}\times\dfrac{1}{6}=\dfrac{1}{8}\left(hs\right)\)

a: số hs lớp 6A là : \(\dfrac{3}{4}+\dfrac{1}{8}+5=\dfrac{18}{24}+\dfrac{3}{24}+5=5\dfrac{21}{24}=5\dfrac{7}{8}=\dfrac{47}{8}\left(hs\right)\)

b: tỉ số là : \(\dfrac{3}{4}\times100:\dfrac{1}{8}=\dfrac{300}{4}:\dfrac{1}{8}=\dfrac{300\times8}{4\times1}=600\%\)

Bình luận (1)
SK
19 tháng 2 2022 lúc 12:03

Gọi học sinh lớp 6a là x hs

Số học sinh giỏi là : \(\dfrac{3}{4}x\)(hs)

Số học sinh khác là : \(\dfrac{1}{6}.\dfrac{3}{4}x=\dfrac{1}{8}x\) (hs)

Theo bài ra có :

\(x-\dfrac{3}{4}x-\dfrac{1}{8}x=5\)

\(x\left(1-\dfrac{3}{4}-\dfrac{1}{8}\right)=5\)

\(\dfrac{1}{8}x=5\)

\(x=40\)

Vậy số hcj sinh lớp 6a là 40 hs

Số học sinh giỏi là : \(\dfrac{3}{4}.40=30\) (hs)

Số học sinh khá là :\(\dfrac{1}{6}.30=5\) (hs)

ĐS ...

Bình luận (0)
HB
Xem chi tiết
TP
18 tháng 1 2022 lúc 14:12

bruh thi nữa kìa:)

Bình luận (0)
NT
18 tháng 1 2022 lúc 21:41

a: Thay x=16 vào B, ta được:

B=4+1=5

b: \(A=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\left(\sqrt{x}-3\right)=\dfrac{x+7}{\sqrt{x}+3}\)

c: Để A<B thì \(x+7< x+4\sqrt{x}+3\)

=>x>1

Bình luận (0)
H24
Xem chi tiết
NL
24 tháng 1 2022 lúc 8:09

Chắc đề đúng là \(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+...\)

- Với \(n=1\) đẳng thức đúng

- Giả sử đẳng thức cũng đúng với \(n=k>1\) hay:

\(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+...+\dfrac{2k-1}{4+\left(2k-1\right)^4}=\dfrac{k^2}{4k^2+1}\)

- Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay:

\(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+...+\dfrac{2k-1}{4+\left(2k-1\right)^4}+\dfrac{2k+1}{4+\left(2k+1\right)^4}=\dfrac{\left(k+1\right)^2}{4\left(k+1\right)^2+1}\)

Thật vậy, ta có:

\(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+...+\dfrac{2k-1}{4+\left(2k-1\right)^4}+\dfrac{2k+1}{4+\left(2k+1\right)^4}=\dfrac{k^2}{4k^2+1}+\dfrac{2k+1}{4+\left(2k+1\right)^4}\)

\(=\dfrac{k^2}{4k^2+1}+\dfrac{2k+1}{\left(2k+1\right)^4+4\left(2k+1\right)^2+4-4\left(2k+1\right)^2}=\dfrac{k^2}{4k^2+1}+\dfrac{2k+1}{\left(4k^2+4k+3\right)^2-\left(4k+2\right)^2}\)

\(=\dfrac{k^2}{4k^2+1}+\dfrac{2k+1}{\left(4k^2+1\right)\left(4k^2+8k+5\right)}=\dfrac{k^2\left(4k^2+8k+5\right)+2k+1}{\left(4k^2+1\right)\left(4k^2+8k+5\right)}\)

\(=\dfrac{\left(k+1\right)^2\left(4k^2+1\right)}{\left(4k^2+1\right)\left(4k^2+8k+5\right)}=\dfrac{\left(k+1\right)^2}{4k^2+8k+5}=\dfrac{\left(k+1\right)^2}{4\left(k+1\right)^2+1}\) (đpcm)

Bình luận (0)
MT
Xem chi tiết
NL
23 tháng 8 2021 lúc 20:10

71.

\(\left\{{}\begin{matrix}BB'\perp\left(ABCD\right)\\BB'\in\left(ABB'A'\right)\end{matrix}\right.\) \(\Rightarrow\left(ABCD\right)\perp\left(ABB'A'\right)\)

74.

\(\left\{{}\begin{matrix}DD'\perp\left(ABCD\right)\\DD'\in\left(CDD'C'\right)\end{matrix}\right.\) \(\Rightarrow\left(ABCD\right)\perp\left(CDD'C'\right)\)

undefined

Bình luận (0)