phân tích đa thức thành nhân tử: 3x2 - 6xy + 3y2 - 12z2
Bài 1: Phân tích đa thức thành nhân tử:
a) x2 -2x -y2 +2y
b) 2x +2y -x2 -xy
c) 3x2 -6xy +3y2 -12z2
d) x2 -25 +y2 +2xy
a) x2-2x-y2+2y
=(x2-y2)-(2x-2y)
=(x-y)(x+y)-2(x-y)
=(x-y)(x+y-2)
d) x2-25+y2+2xy
=(x2+y2+2xy)-52
=(x+y)2-52
=(x+y+5)(x+y-5)
Phân tích đa thức thành nhân tử :
a) 3x2-6xy+3y2-12x2
b) 3x2y2-6x2y3+12x2y2
c) 3x2-3y2+12x-12y
a) \(3x^2-6xy+3y^2-12x^2=3\left(x^2-2xy+y^2\right)-12x^2=3\left(x-y\right)^2-12x^2=3\left[\left(x-y\right)^2-4x^2\right]=3\left(x-y-2x\right)\left(x-y+2x\right)=3\left(-x-y\right)\left(3x-y\right)\)
b)\(3x^2y^2-6x^2y^3+12x^2y^2=3x^2y^2\left(1-2y+4\right)=3x^2y^2\left(5-2y\right)\)
c) \(3x^2-3y^2+12x-12y=3\left(x^2-y^2\right)+12\left(x-y\right)=3\left(x-y\right)\left(x+y+4\right)\)
a: \(3x^2-6xy+3y^2-12x^2\)
\(=3\left(x^2-2xy+y^2-4x^2\right)\)
\(=3\left[\left(x-y\right)^2-4x^2\right]\)
\(=3\left(x-y-2x\right)\left(x-y+2x\right)\)
\(=3\left(-x-y\right)\left(3x-y\right)\)
b: \(3x^2y^2-6x^2y^3+12x^2y^2\)
\(=3x^2y^2\left(1-2y+4\right)\)
\(=3x^2y^2\left(-2y+5\right)\)
c: Ta có: \(3x^2-3y^2+12x-12y\)
\(=3\left(x-y\right)\left(x+y\right)+12\left(x-y\right)\)
\(=3\left(x-y\right)\left(x+y+4\right)\)
Phân tích đa thức sau thành nhân tử: 3x2 + 6xy + 3y2 – 3z2
3x2 + 6xy + 3y2 – 3z2
= 3.(x2 + 2xy + y2 – z2)
(Nhận thấy xuất hiện x2 + 2xy + y2 là hằng đẳng thức nên ta nhóm với nhau)
= 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2]
= 3(x + y – z)(x + y + z)
Phân tích đa thức
3x2 + 6xy + 3y2 thành nhân tử có kết quả là
\(3x^2+6xy+3y^2=3\cdot\left(x^2+2xy+y^2\right)=3\cdot\left(x+y\right)^2\)
3x^2 - 6xy + 3y^2
=3.(x^2 - 2xy + y^2)
=3.(x - y)^2
phân tích đa thức thành nhân tử :
a.9x2-3x+2y-4y2
b.3x2-6xy+3y2-5x+5y
a)
\(9x^2-3x+2y-4y^2\\=(9x^2-4y^2)-(3x-2y)\\=[(3x)^2-(2y)^2]-(3x-2y)\\=(3x-2y)(3x+2y)-(3x-2y)\\=(3x-2y)(3x+2y-1)\)
b)
\(3x^2-6xy+3y^2-5x+5y\\=3(x^2-2xy+y^2)-5(x-y)\\=3(x-y)^2-5(x-y)\\=(x-y)[3(x-y)-5]\\=(x-y)(3x-3y-5)\\Toru\)
b4 phân tích đa thành nhân tử
a 3x2 -6xy + 3x2 -12z2
b x2 - xy + x-y
c x2 -2x -15
d 2x2 + 3x-5
=((
b, (\(x^2\) - \(xy\) ) + (\(x-y\))
= (\(x-y\)).\(x\) + (\(x-y\))
= (\(x-y\)).(\(x\) + 1)
c, \(x^2\) - 2\(x\) - 15
= (\(x^2\) - 2\(x\) + 1) - 16
= (\(x\) - 1)2 - 42
= (\(x-1-4\)).(\(x-1+4\))
= (\(x-5\)).(\(x+3\))
d, 2\(x^2\) + 3\(x\) - 5
= 2\(x^2\) - 2 + 3\(x\) - 3
= 2.(\(x^2\) - 1) + 3.(\(x-1\))
= 2.(\(x-1\)).(\(x\) + 1) + 3.(\(x-1\))
= (\(x-1\)).(2\(x\) + 2 + 3)
= (\(x\) -1).(2\(x\) + 5)
phân tích đa thức thành nhân tử
a/ x2 + 4x – 21
b/ 3x2 - 6xy + 3y2 – 3z2
c/ 2x2y + 12xy + 18y
a/ x2 + 4x - 21= x2 - 3x +4x - 21
= (x2+4x)-(3x+21)
= x(x+4)- 3(x+7)
= (x-3).(x+7)
b/ 3x2-6xy+3y2-3z2 = 3(x2- 2xy+y2- z2)
= 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2]
= 3(x + y – z)(x + y + z)
c/ 2x2y + 12xy + 18y = 2y(x2+6x+9)
Phân tích các đa thức sau thành nhân tử
a,3x2 + 6xy + 3y2 - 3z
b,,x3 + x2y - x2z - xyz đ
`@` `\text {Ans}`
`\downarrow`
`a,`
`3x^2 + 6xy + 3y^2 - 3z`
`= 3*x^2 + 3*2xy + 3y^2 - 3z`
`= 3(x^2 + 2xy + y^2 - z)`
`b,`
`x^3 + x^2y - x^2z - xyz`
`= x(x + y)(x-z)`
Phân tích các đa thức sau thành nhân tử:
a) 3x4y - 12x2y3
b) x2 - y2 - 8y -16
c) x3 +3x2 + 4x +12
d) 3x2 - 6xy + 3y2 - 27
\(3x^4y-12x^2y^3=3x^2y\left(x^2-4y^2\right)=3x^2y\left(x-2y\right)\left(x+2y\right)\)
\(x^2-y^2-8y-16=x^2-\left(y^2+8y+16\right)=x^2-\left(y+4\right)^2=\left(x+y+4\right)\left(x-y-4\right)\)
\(x^3+3x^2+4x+12=x^2\left(x+3\right)+4\left(x+3\right)=\left(x^2+4\right)\left(x+3\right)\)
\(3x^2-6xy+3y^2-27=3\left[\left(x-y\right)^2-9\right]=3\left(x-y-3\right)\left(x-y+3\right)\)