Những câu hỏi liên quan
CD
Xem chi tiết
NT
2 tháng 2 2023 lúc 21:01

A=a^5-a=a(a^4-1)

=a(a-1)(a+1)(a^2+1)

Vì a;a-1;a+1 là 3 số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>A chia hết cho 6

Vì 5 là số nguyên tố

nên a^5-a chia hết cho 5

=>A chia hết cho 30

Bình luận (0)
H24
Xem chi tiết
TG
Xem chi tiết
DF
Xem chi tiết
H24
Xem chi tiết
TK
18 tháng 3 2018 lúc 21:08

Nếu a + b chia hết cho 6 => a chia hết cho 6 và b chia hết cho 6

=> a^3 hay aaa chia hết cho 6

b^3 hay bbb chia hết cho 6

=> a^3 + b^3 chia hết cho 6.

Bình luận (5)
DD
Xem chi tiết
PL
Xem chi tiết
MD
15 tháng 10 2019 lúc 22:19

c) \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)Vì n nguyên

\(\Rightarrow-5n⋮5\left(đpcm\right)\)

Bình luận (0)
MD
15 tháng 10 2019 lúc 22:16

a) \(\left(2n+3\right)^2-9\)

\(=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)\)

\(=4n\left(n+3\right)\)

Do \(n\in Z\Rightarrow n+3\in Z\)

\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)

Bình luận (0)
MD
15 tháng 10 2019 lúc 22:18

b) \(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

Vì \(n\in Z\Rightarrow\left\{{}\begin{matrix}x+1\in Z\\n+2\in Z\end{matrix}\right.\)

Mà n,n+1,n+2 là 3 sô nguyên liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+3\right)⋮6\left(dpcm\right)\)

Bình luận (0)
H24
Xem chi tiết
H24
24 tháng 4 2018 lúc 21:28

a5-a = a . ( a4 -1 ) = a(a-1)(a+1)(a2+1)

a(a-1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2

(a-1)a(a+1) là tích ba số tự nhiên liên tiếp nên chia hết cho 3

mà (2,3)=1 ⇒ a(a-1)(a+1)(a2+1) ⋮ (2.3) = 6

*Nếu a = 5q (q ∈ N) =>a(a-1)(a+1)(a2+1) ⋮ 5

Nếu a = 5q + 1 => a - 1 = 5q

Nếu a = 5q + 2 => a2 + 1= (5q+2)2+1=25q2 +5

Nếu a = 5q+3 => a2 + 1= (5q+3)2+1=25q2 +10

Nếu a = 5q+4 => a +1 = 5q +5

Vậy a5 -5 chia hết cho30 với a thuộc Z

Bình luận (0)
HU
Xem chi tiết
NA
24 tháng 7 2017 lúc 9:47

ê con uyên lợn

Bình luận (0)