Cho \(f\left(x\right)=ax^2+bx+c.\) Biết \(f\left(0\right);f\left(1\right);f\left(2\right)\) đều là các số nguyên .
CM f(x) luôn nhận giá trị nguyên với mọi x nguyên .
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) . Biết rằng 6a-12b-c = 0 . Chứng tỏ rằng \(f\left(2\right).f\left(-3\right)\ge0\)
\(f\left(2\right)=a.2^2+b.2+c=4a+2b+c=10a-10b-\left(6a-12b-c\right)=10a-10b\)
\(f\left(-3\right)=a.\left(-3\right)^2+b.\left(-3\right)+c=9a-3b+c=15a-15b-\left(6a-12b-c\right)=15a-15b\)
\(\Rightarrow f\left(2\right).f\left(-3\right)=\left(10a-10b\right).\left(15a-15b\right)=150\left(a-b\right)^2\)
Mà \(\left(a-b\right)^2\ge0;\forall a;b\Rightarrow150\left(a-b\right)^2\ge0\)
\(\Rightarrow f\left(2\right).f\left(-3\right)\ge0\)
Cho \(f\left(x\right)=ax^2+bx+c\) (a ,b,c là các số thực )
a) Biết 10a+2b-5c=0 . Chứng minh\(f\left(-1\right).f\left(-4\right)\ge0\)
b) Biết 13a + b + 2c=0 . Chứng minh \(f\left(-2\right).f\left(3\right)\le0\)
Lời giải:
a.
$f(-1)=a-b+c$
$f(-4)=16a-4b+c$
$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$
$\Rightarrow f(-4)=6f(-1)$
$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)
b.
$f(-2)=4a-2b+c$
$f(3)=9a+3b+c$
$\Rightarrow f(-2)+f(3)=13a+b+2c=0$
$\Rightarrow f(-2)=-f(3)$
$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)
a.
�
(
−
1
)
=
�
−
�
+
�
f(−1)=a−b+c
�
(
−
4
)
=
16
�
−
4
�
+
�
f(−4)=16a−4b+c
⇒
�
(
−
4
)
−
6
�
(
−
1
)
=
16
�
−
4
�
+
�
−
6
(
�
−
�
+
�
)
=
10
�
+
2
�
−
5
�
=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0
⇒
�
(
−
4
)
=
6
�
(
−
1
)
⇒f(−4)=6f(−1)
⇒
�
(
−
1
)
�
(
−
4
)
=
�
(
−
1
)
.
6
�
(
−
1
)
=
6
[
�
(
−
1
)
]
2
≥
0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)]
2
≥0 (đpcm)
b.
�
(
−
2
)
=
4
�
−
2
�
+
�
f(−2)=4a−2b+c
�
(
3
)
=
9
�
+
3
�
+
�
f(3)=9a+3b+c
⇒
�
(
−
2
)
+
�
(
3
)
=
13
�
+
�
+
2
�
=
0
⇒f(−2)+f(3)=13a+b+2c=0
⇒
�
(
−
2
)
=
−
�
(
3
)
⇒f(−2)=−f(3)
⇒
�
(
−
2
)
�
(
3
)
=
−
[
�
(
3
)
]
2
≤
0
⇒f(−2)f(3)=−[f(3)]
2
≤0 (đpcm
Cho hàm số \(y=f\left(x\right)=ax^2+bx+c\)
Xác định các hệ số \(a,b,c\) biết \(f\left(0\right)=1\),\(f\left(1\right)=2\),\(f\left(2\right)=4\)
Giúp mình với :3?
f(0) = 1
\(\Rightarrow\) a.02 + b.0 + c = 1
\(\Rightarrow\) c = 1
Vậy hệ số a = 0; b = 0; c = 1
f(1) = 2
\(\Rightarrow\) a.12 + b.1 + c = 2
\(\Rightarrow\) a + b + c = 2
Vậy hệ số a = 1; b = 1; c = 1
f(2) = 4
\(\Rightarrow\) a.22 + b.2 + c = 4
\(\Rightarrow\) 4a + 2b + c = 4
Vậy hệ số a = 4; b = 2; c = 1
Chúc bn học tốt! (chắc vậy :D)
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) \(\left(a\ne0\right)\). Tìm a, b, c biết \(f\left(x\right)-2020\)chia hết cho x - 1, \(f\left(x\right)+2021\) chia hết cho x + 1 và \(f\left(x\right)\) nhận giá trị bằng 2 khi x = 0
Mình có nghĩ ra cách này mọi người xem giúp mình với
f(x) = \(ax^2+bx+c\)
Ta có f(0) = 2 => c = 2
Ta đặt Q(x) = \(ax^2+bx+c-2020\)
và G(x) = \(ax^2+bx+c+2021\)
f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư
\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)
Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0
hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)
G(x) chia cho x + 1 số dư
\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)
Mà G(x) chia hết cho x + 1 nên \(R_2\)=0
hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)
Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)
\(f\left(0\right)=2\Rightarrow c=2\)
\(f\left(x\right)-2020\) chia hết \(x-1\Rightarrow f\left(1\right)-2020=0\)
\(\Rightarrow a+b+c-2020=0\Rightarrow a+b-2018=0\)
\(f\left(x\right)+2021\) chia hết \(x+1\Rightarrow f\left(-1\right)+2021=0\)
\(\Rightarrow a-b+c+2021=0\Rightarrow a-b+2023=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)
Cho biết hàm số: \(y=f\left(x\right)=ax^2+bx+c\)
Cho biết: \(f\left(0\right)=2010;f\left(1\right)=2011;f\left(-1\right)=2012\). Tính \(f\left(-2\right)=?\)
Cho đa thức \(f\left(x\right)=ax^2+bx+c\). Biết 10a+b+c=0. Chứng minh: \(f\left(4\right).f\left(-2\right)\le0\)
Lời giải:
Ta có:
$f(4)=16a+4b+c$
$f(-2)=4a-2b+c$
Cộng theo vế: $f(4)+f(-2)=20a+2b+2c=2(10a+b+c)=2.0=0$
$\Rightarrow f(-2)=-f(4)$
$\Rightarrow f(4).f(-2)=f(4).-f(4)=-f(4)^2\leq 0$
Ta có đpcm.
Cho \(f\left(x\right)=ax^2+bx+c\left(a,b,c\inℤ,a>0\right)\) sao cho phương trình \(f\left(x\right)=0\) có 2 nghiệm phân biệt thuộc \(\left(0;1\right)\). Tìm đa thức \(f\left(x\right)\) thỏa điều kiện trên mà \(a\) nhỏ nhất.
Cho hàm số \(f\left(x\right)=ax^3+bx^2+cx+d\) thỏa mãn \(f\left(-1\right)=2,f\left(0\right)=1,f\left(1\right)=7,f\left(\dfrac{1}{2}\right)=3\). Xác định giá trị \(a,b,c,d\).
\(f\left(-1\right)=2\Rightarrow-a+b-c+d=2\\ f\left(0\right)=1\Rightarrow d=1\\ f\left(1\right)=7\Rightarrow a+b+c+d=7\\ f\left(\dfrac{1}{2}\right)=3\Rightarrow\dfrac{1}{8}a+\dfrac{1}{4}b+\dfrac{1}{2}c+d=3\)
\(d=1\Rightarrow-a+b-c=1;a+b+c=6\\ \Rightarrow2b=7\\ \Rightarrow b=\dfrac{7}{2}\\ \Rightarrow\dfrac{1}{8}a+\dfrac{7}{8}+\dfrac{1}{2}c=2\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{4}a+\dfrac{7}{4}+c\right)=2\\ \Rightarrow\dfrac{1}{4}a+\dfrac{7}{4}+c=4\\ \Rightarrow a+7+4c=16\\ \Rightarrow a+4c=9;a+c=6-\dfrac{7}{2}=\dfrac{5}{2}\\ \Rightarrow3c=\dfrac{13}{2}\Rightarrow c=\dfrac{13}{6}\\ \Rightarrow a=\dfrac{5}{2}-\dfrac{13}{6}=\dfrac{1}{3}\)
Vậy \(\left(a;b;c;d\right)=\left(\dfrac{1}{3};\dfrac{7}{2};\dfrac{13}{6};1\right)\)
Cho đa thức \(f\left(x\right)=ax^3+bx^2+cx+d\) . Biết \(f\left(x\right)=0\) với mọi giá trị của \(x\). Chứng minh \(a=b=c=d=0\)
Giúp e với ạ :<
Ta có:
\(f\left(x\right)=ax^3+bx^2+cx+d\\ f\left(x\right)=0x^3+0x^2+0x+0\)
\(\Rightarrow a=b=c=d\left(theo.pp.đa.thức.đồng.nhất\right)\\ Chúc.bạn.học.Toán.tốt.\)
Đề hình như sai
Cho a=1, b=2, c=3, d=0, x=0 có đúng đâu nhỉ
1. Cho \(f\left(x\right)=x^{2n}-x^{2n-1}+x^{2n-2}-...+x^2-x+1\)
\(g\left(x\right)=1-x+x^2-...+x^{2n-2}-x^{2n-1}+x^{2n}\)
Tính giá trị của đa thức h(x) tại x=2012, biết \(h\left(x\right)=\left(f\left(x\right)+g\left(x\right)\right).\left(g\left(x\right)-f\left(x\right)\right)\)
2. Xác định các đa thức sau:
a) Nhị thức bậc nhất f(x) = ax + b với \(a\ne0\), biết f(-1) = 1 và f(1) = -1
b) Tam thức bậc hai \(g\left(x\right)=ax^2+bx+c\) với \(a\ne0\), biết g(-2) = 9, g(-1) = 2, g(1)=6
3. a) Đa thức f(x) = ax + b \(\left(a\ne0\right)\). Biết f(0) = 0. Chứng minh f(x) = -f(-x) với mọi x
b) Đa thức f(x) = ax2 + bx + c \(\left(a\ne0\right)\). Biết f(1) = f(-1). Chứng minh f(x) = f(-x) với mọi x.