Violympic toán 7

H24

Cho đa thức \(f\left(x\right)=ax^2+bx+c\) . Biết rằng 6a-12b-c = 0 . Chứng tỏ rằng \(f\left(2\right).f\left(-3\right)\ge0\)

NL
17 tháng 2 2022 lúc 22:46

\(f\left(2\right)=a.2^2+b.2+c=4a+2b+c=10a-10b-\left(6a-12b-c\right)=10a-10b\)

\(f\left(-3\right)=a.\left(-3\right)^2+b.\left(-3\right)+c=9a-3b+c=15a-15b-\left(6a-12b-c\right)=15a-15b\)

\(\Rightarrow f\left(2\right).f\left(-3\right)=\left(10a-10b\right).\left(15a-15b\right)=150\left(a-b\right)^2\)

Mà \(\left(a-b\right)^2\ge0;\forall a;b\Rightarrow150\left(a-b\right)^2\ge0\)

\(\Rightarrow f\left(2\right).f\left(-3\right)\ge0\)

Bình luận (0)

Các câu hỏi tương tự
DD
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết
DH
Xem chi tiết
TM
Xem chi tiết
DH
Xem chi tiết
HD
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết