cho \(x^2+y^2=1\) Tìm GTLN,GTNN của
\(P=\frac{2\left(x^2+6xy\right)}{1+2xy+2y^2}\)
cho \(x^2+y^2=1\) Tìm GTLN,GTNN của
P=\(\frac{2\left(x^2+6xy\right)}{1+2xy+2y^2}\)
Cho 2 số thực x,y thỏa mãn: \(x^2+y^2=1\). Tìm GTLN, GTNN của biểu thức
\(P=\dfrac{2\left(x^2+6xy\right)}{1+2xy+2y^2}\)
Cho hai số thực x, y thỏa mãn \(x^2+y^2=1\). Tìm GTLN và GTNN của biểu thức:
\(P=\dfrac{2\left(x^2+6xy\right)}{1+2xy+2y^2}\)
Do \(x^2+y^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)
\(\Leftrightarrow P=\dfrac{2sin^2a+12sina.cosa}{1+2sina.cosa+2cos^2a}=\dfrac{1-cos2a+6sin2a}{2+sin2a+cos2a}\)
\(\Leftrightarrow P\left(2+sin2a+cos2a\right)=1-cos2a+6sin2a\)
\(\Leftrightarrow\left(P-6\right)sin2a+\left(P+1\right)cos2a=1-2P\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(P-6\right)^2+\left(P+1\right)^2\ge\left(1-2P\right)^2\)
\(\Leftrightarrow P^2+3P-18\le0\Rightarrow-6\le P\le3\)
Vậy \(\left\{{}\begin{matrix}P_{max}=3\\P_{min}=-6\end{matrix}\right.\)
1) Tìm GTNN của \(B=2\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-5\left(\frac{x}{y}+\frac{y}{x}\right)\\ \left(x,y>0\right)\)
2) Tìm GTLN và GTNN của \(C=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
cho x, y thuộc \(x^2+2y^2+2018\left(x+y\right)+2xy+4032=0\)
Hãy tìm GTNN và GTLN của P= X+Y+1
tìm GTNN, GTLN của A= \(\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
Đặt \(a=x^2;b=y^2\left(a;b\ge0\right)\)
\(A=\frac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)
\(\left|A\right|=\frac{\left|\left(a-b\right)\left(1-ab\right)\right|}{\left(1+a\right)^2\left(1+b^2\right)}\le\frac{\left(a+b\right)\left(1+ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)
\(\left(1+a\right)\left(1+b\right)=\left(a+b\right)+\left(1+ab\right)\ge2\sqrt{\left(a+b\right)\left(1+ab\right)}\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\ge4\left(a+b\right)\left(1+ab\right)\)
\(\Rightarrow\left|A\right|\le4\)
\(\Rightarrow-4\le A\le4\)
\(A=-4\Leftrightarrow a=0;b=1\Leftrightarrow x=0;y=+1or-1\)
\(A=4\Leftrightarrow a=1;b=0\Leftrightarrow x=+-1;y=0\)
Vậy \(MinA=-4;MaxA=4\)
Cho \(x>0;y>0;x+y=2010\)
a)Tìm GTLN của biểu thức \(A=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}\)
b)Tìm GTNN của biểu thức \(B=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\)
\(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2=1+\frac{2}{x}+\frac{1}{x^2}+1+\frac{2}{y}+\frac{1}{y^2}\)
\(=2+\frac{2x+1}{x^2}+\frac{2y+1}{y^2}\)\(=2+\frac{2xy^2+y^2+2x^2y+x^2}{x^2y^2}\)\(=2+\frac{2xy\left(x+y\right)+\left(x+y\right)^2-2xy}{x^2y^2}\)
thay x+y=1 vào biểu thức, ta có:
\(2+\frac{2xy+1-2xy}{x^2y^2}=2+\frac{1}{x^2y^2}=2+\left(\frac{1}{xy}\right)^2\)
vì \(\left(\frac{1}{xy}\right)^2\ge0\) nên GTNN của biểu thức là 2
cái này mình giải dùm một bạn của mình, mọi người đi qua đừng chú ý nhé
hay đó, cảm ơn luôn nha!~~ (dù ko lq :D)
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)