chứng minh tỉ số 2 diện tích của 2 tam giác đồng dạng bằng tỉ số đồng dạng
Chứng minh tỉ số 2 diện tích của 2 tam giác đồng dạng bằng tỉ số đồng dạng
chứng minh tỉ số 2 diện tích của 2 tam giác đồng dạng bằng tỉ số đồng dạng
Tham khảo: Toán - [Lớp 8] Chứng minh tỉ số diện tích của hai tam giác đồng dạng thì bằng bình phương tỉ số đồng dạng. | Cộng đồng Học sinh Việt Nam - HOCMAI Forum
tk:
GT ΔABC∼ΔA′B′C′ theo tỉ số k
KL: S ABC SA′B′C′
bg:
Chứng minh tgABC đồng dạng vớ tg A'B'H' để suy ra: AH/A'H' = AB/A'B' = k
SABCSA′B′C′= 1/2AH.BC1/2A′H′.B′C′=k.k=k2
Chứng minh tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng
Giả sử \(_{\Delta ABC\approx\Delta DEM}\) theo tỷ số k và có 2 đường cao, 2 cạnh tương ứng là h,a ; h',a'
Ta có: \(\frac{\Delta ABC}{\Delta DEM}=\frac{ah}{2}\div\frac{a'h'}{2}=\frac{ah}{a'h'}=\frac{a}{a'}.\frac{h}{h'}=k.k=k^2\)
=> ĐPCM
hình 49
Sabc=1/2ah.bc
Sa'b'c'=1/2a'h'.b'c'
tính tỉ sô Sabc/Sa'b'c=ah.bc/a'h'.b'c'
tam giác abc đồng dạng với tam giác a'b'c' theo tỉ số đồng dạng k suy ra bc/b'c'=ah/a'h'=k
suy ra Sabc/Sa'b'c'=bc/b'c' . ah/a'h'=k.k=k^2
suy ra đpcm
Chứng minh tỉ số 2 chu vi của 2 tam giác đồng dạng bằng tỉ số đồng dạng
Gọi chu vi của tam giác ABC là C1, chu vi của tam giác DEF là C2
và ΔABC∼ΔDEF
=>AB/DE=BC/EF=AC/DF
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AB}{DE}=\dfrac{BC}{EF}=\dfrac{AC}{DF}=\dfrac{AB+BC+AC}{DE+EF+DF}=\dfrac{C_1}{C_2}\)
Do đó: Tỉ số chu vi bằng tỉ số đồng dạng
Chứng minh tỉ số 2 đường phân giác tương ứng của 2 tam giác đồng dạng bằng tỉ số đồng dạng
-Giả sử △ABC∼△DEF \(\Rightarrow\dfrac{AC}{DF}=k\).
-Kẻ các đường phân giác AM, DN của △ABC, △DEF.
-Ta có: \(\widehat{NDF}=\dfrac{1}{2}\widehat{EDF}\) (DN là p/g của \(\widehat{EDF}\))
\(\widehat{MAC}=\dfrac{1}{2}\widehat{BAC}\) (AM là p/g của \(\widehat{BAC}\)).
Mà \(\widehat{EDF}=\widehat{BAC}\)(△ABC∼△DEF) nên \(\widehat{NDF}=\widehat{MAC}\).
-Xét △AMC và △DNF có:
\(\widehat{NDF}=\widehat{MAC}\) (cmt).
\(\widehat{NFD}=\widehat{MCA}\)(△ABC∼△DEF)
\(\Rightarrow\)△AMC∼△DNF(g-g).
\(\Rightarrow\dfrac{AM}{DN}=\dfrac{AC}{DF}=k\) (2 tỉ số tương ứng).
Cho tam giác ABC đường cao AH, tam giác A'B'C' đường cao A'H'. Biết tam giác A'B'C' đồng dạng với tam giác ABC thei tỉ số K. Chứng minh rằng tỉ số diện tích của hai tam giác bằng bình phương tỉ số đồng dạng.
Các bạn ơi giúp mình với ❤
1) Chứng minh tỉ số hai đường cao tương ứng của hai tam giác đồng dạng thì bằng tỉ số đồng dạng.
2) Chứng minh tỉ số hai đường phân giác tương ứng của hai tam giác đồng dạng thì bằng tỉ số đồng dạng.
3) Chứng minh tỉ số hai đường trung tuyến tương ứng của hai tam giác đồng dạng thì bằng tỉ số đồng dạng.
3
Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=k\)
Xét tam giác A'B'H' và tam giác ABH có:
góc A'H'B' = góc ABH (=90o)
góc A'B'H'= góc ABH (vì tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'H' đồng dạng với tam giác ABH (g.g)
Do vậy \(\dfrac{A'H'}{AH}=\dfrac{A'B'}{AB}=k\)
2/
Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=k\) (1)
và \(\)góc B'A'M' = góc BAM \(\left(=\dfrac{1}{2}B'A'C'=\dfrac{1}{2}BAC\right)\) (2)
Xét tam giác A'B'M' và tam giác ABC có:
góc B'A'M' = góc BAM (từ 2)
góc A'B'M' = góc ABM (tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'M' đồng dạng với tam giác ABM (g.g)
Do vậy \(\dfrac{A'M'}{AM}=\dfrac{A'B'}{AB}=k\) (từ 1)
3/
Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{\dfrac{B'C'}{2}}{\dfrac{BC}{2}}=\dfrac{B'M'}{BM}\) (1)
Xét tam giác A'B'M' và tam giác ABM có:
\(\dfrac{A'B'}{AB}=\dfrac{B'M'}{BM}\) (từ 1)
góc A'B'M' = góc ABM (tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'M' đồng dạng với tam giác ABM (c.g.c)
Do vậy \(\dfrac{A'M'}{AM}=\dfrac{A'B'}{AB}=k\)
tam giác abc đồng dạng với tam giác a, b, c, theo tỉ số đồng dạng k bằng 2/7 tỉ số diện tích của tam giác abcd và tam giác a, b, c, là bao nhiêu?
Do tỉ số diện tích bằng bình phương tỉ số đồng dạng nên ta có :
\(\frac{S_{ABC}}{S_{A'B'C'}}=\left(\frac{2}{7}\right)^2=\frac{2^2}{7^2}=\frac{4}{49}\)
Vậy tỉ số diện tích tam giác ABC và tam giác A'B'C' là 4/49