M = \(\dfrac{5x-7y}{5x+7y}\) biết \(\dfrac{x}{14}=\dfrac{y}{10}\)
Tìm x, y, z biết:
\(\dfrac{5x-1}{3}=\dfrac{7y-6}{5}=\dfrac{5x+7y-7}{4x}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{5x-1}{3}=\dfrac{7y-6}{5}=\dfrac{5x+7y-7}{8}=\dfrac{5x+7y-7}{4x}\)
+) Xét \(5x+7y-7=0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{5x-1}{3}=0\\\dfrac{7y-6}{5}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5x-1=0\\7y-6=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{6}{7}\end{matrix}\right.\)
+) Xét \(5x+7y-7\ne0\)
\(\Rightarrow4x=8\Rightarrow x=2\)
Thay \(x=2\) vào \(\dfrac{5x-1}{3}=\dfrac{7y-6}{5}\)
\(\Rightarrow3=\dfrac{7y-6}{5}\)
\(\Rightarrow7y=21\Rightarrow y=3\)
Vậy nếu \(5x+7y-7=0\) thì \(x=\dfrac{1}{5};y=\dfrac{6}{7}\)
nếu \(5x+7y-7\ne0\) thì x = 2, y = 3
tìm x,y biết \(\dfrac{1+3y}{12}\)=\(\dfrac{1+5y}{5x}\)=\(\dfrac{1+7y}{4x}\)
Lời giải:
Từ $\frac{1+5y}{5x}=\frac{1+7y}{4x}$
$\Rightarrow \frac{1+5y}{5}=\frac{1+7y}{4}$
$\Rightarrow 4(1+5y)=5(1+7y)$
$\Rightarrow 4+20y=5+35y$
$\Rightarrow y=\frac{-1}{15}$
Thay vào điều kiện ban đầu:
$(1+3.\frac{-1}{15}):12=(1+5.\frac{-1}{15}):(5x)$
$\Rightarrow \frac{1}{15}=\frac{2}{15}:x$
$\Rightarrow x=2$
tìm x,y biết \(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
tìm x,y
\(\dfrac{1+3y}{12}=\dfrac{a+5x}{5x}=\dfrac{1+7y}{4x}\)
\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
\(\Rightarrow\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}=\dfrac{1+5y-1+7y}{(5x-4x)}=-\dfrac{2y}{x}\)
\(\dfrac{1+5y}{5}=-2y\)
Giải ra ta có y\(=\)\(-\dfrac{1}{15}\)
\(\Leftrightarrow x=2\)
2) Tìm x, y biết \(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)(với x, y khác 0)
Tìm cặp số x;y biết : \(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}=\dfrac{1+7y-1-5y}{4x-5x}=\dfrac{2y}{-x}=\dfrac{1+5y-1-3y}{5x-12}=\dfrac{2y}{5x-12}\)
=>\(\dfrac{2y}{-x}=\dfrac{2y}{5x-12}\) với y=0 thay vào không thỏa mãn
nếu y khác 0
=>-x=5x-12
=>x=2. Thay x=2 vào trên ta được
\(\dfrac{1+3y}{12}=\dfrac{2y}{-2}=-y=>1+3y=-12y=>1=-15y=\dfrac{-1}{15}\)
Vậy x=2,y=\(\dfrac{-1}{15}\) thỏa mãn đề bài
5.Tìm x,y biết :
\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
\(\dfrac{1+3y}{12}==\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
\(\Rightarrow\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}=\dfrac{1+5y-1+7x}{\left(5x-4x\right)}=\dfrac{-2y}{x}\)
\(\Rightarrow\dfrac{\left(1+5y\right)}{5}=-2y\)
Giải ra ta có: \(y=\dfrac{-1}{15}\)
\(\Leftrightarrow x=2\)
Tìm các cặp x ,y biết \(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}=\dfrac{1+5y-1-7y}{5x-4x}=\dfrac{-2y}{x}\)
Khi đó \(\dfrac{1+5y}{5x}=\dfrac{-2y}{x}\)
\(\Rightarrow\left(1+5y\right)x=-10xy\)
\(\Rightarrow x+5xy=-10xy\)
\(\Rightarrow x=-10xy-5xy\)
\(\Rightarrow x=-15xy\)
\(\Rightarrow y=\dfrac{-1}{15}\)
và \(x=2\)
Vậy \(\left(x,y\right)=\left(2,\dfrac{-1}{15}\right)\).
Ta có : \(\dfrac{1+5y}{5x}\) = \(\dfrac{1+7y}{4x}\)
=> \(\dfrac{4\left(1+5y\right)}{20x}\) = \(\dfrac{5\left(1+7y\right)}{20x}\)
=> 4(1 + 5y) = 5(1 + 7y)
=> 4 + 20y = 5 + 35y
=> 4 - 5 = 35y - 20y
=> -1 = 15y
=> y = \(\dfrac{-1}{15}\)
Thay vào trên ta có : \(\dfrac{1+5y}{5x}\) = \(\dfrac{1}{15}\)
=> \(\dfrac{2}{3}\) : 5x = \(\dfrac{1}{15}\)
=> 5x = 10
=> x = 2
Vậy x = 2 và y = \(\dfrac{-1}{15}\)
Tìm các cặp số ( x , y) biết :
\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
\(\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\4\left(1+5y\right)=5\left(1+7y\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\15y=-1;y=-\dfrac{1}{15}\end{matrix}\right.\)
\(\dfrac{1+3y}{12}=\dfrac{1+5y}{x}\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x=\dfrac{12\left(1+5y\right)}{1+3y}=4.5.\left(\dfrac{3+15y}{5+15y}\right)=4.5.\left(\dfrac{3-1}{5-1}\right)=10\end{matrix}\right.\)\(\left(x;y\right)=\left(10;-\dfrac{1}{15}\right)\)