x/14=y/10
nên x/7=y/5=k
=>x=7k; y=5k
\(A=\dfrac{5\cdot7k-7\cdot5k}{5\cdot7k+7\cdot5k}=0\)
x/14=y/10
nên x/7=y/5=k
=>x=7k; y=5k
\(A=\dfrac{5\cdot7k-7\cdot5k}{5\cdot7k+7\cdot5k}=0\)
Tìm x; y
\(\dfrac{3y+1}{12}=\dfrac{5y+2}{5x}=\dfrac{7y+3}{4x}\)
\(\dfrac{5x}{7y}\)=\(\dfrac{-1}{3}\)và -2x+3y=7
1/ x\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\text{và}2x+3y-z=50\)
2/ x : y : z = 3 : 5 ; ( - 2 ) và 5x - y + 3z = -16
3/ 2x + 3y ; 7z = 5y và 3x - 7y + 5z = 30
4/ \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\text{và}x-y-z=38\)
Tính x,y bt:
\(\dfrac{3x-1}{4}=\dfrac{7y-4}{5}=\dfrac{3x+7y-5}{3x}\)
tính giá trị của biểu thức sau:
a)2x-\(\dfrac{y\left(x^2-2\right)}{xy+y}\)tại x=0;y=-1
b)A=4x^2-3IxI-2 tại x=2 và x=-3
c)B=5x^2-7y+6 tại x=-1/5;y=-3/7
Bài 1 : Tìm x,y,z biết :
a) 2x = 3y ; 5y = 7z và 3x - 7y + 5z = -30
b) 3x =5y ; 7y = 2z và x + y + z = 74
c) x : z = \(\dfrac{2}{3}\) : \(\dfrac{1}{2}\) ; z : y = 1 : \(\dfrac{4}{7}\) và y + z = 66
d) x : y : z = 3 : 4 : 5 và \(2x^2\) + \(2y^2\) - \(3z^2\) = -100
e) \(x:y:z\) = 2 : 5 : 6 và \(2x^2\) + \(4y^2\) - \(4z^2\) = -324
f) \(\dfrac{x-1}{2}\) = \(\dfrac{y-2}{3}\) = \(\dfrac{z-3}{4}\) và \(x-2y+3z=14\)
g)\(\dfrac{x-1}{2}\) = \(\dfrac{y+3}{4}\) =\(\dfrac{z-5}{6}\) và \(5z-3x-4y=50\)
h) \(\dfrac{x}{2}=\dfrac{y}{7}\) và \(xy=56\)
i)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{xy}{200}\)
k) \(\dfrac{x-5}{6}=\dfrac{x+5}{18}\)
l) \(\dfrac{2x-11}{12}=\dfrac{x+5}{20}\)
cho\(\dfrac{7x+5y}{3x-7y}=\dfrac{7z+5t}{3z-5t}\).CMR \(\dfrac{x}{y}=\dfrac{z}{t}\)
a)A=\(\dfrac{5}{X}+\dfrac{Y}{5}+\dfrac{1}{Z}\) tại X=\(\dfrac{1}{2}\); Y=20; Z=\(\dfrac{-1}{4}\)
b)B=\(\dfrac{4x+7y}{x-3y}tại\dfrac{y}{x}=\dfrac{1}{4}\) (x,y khác 0)
Tính gtri của biểu thức A = \(\dfrac{5x^2+3y^2}{5x^2-y^2}\)
biết \(\dfrac{x}{3}=\dfrac{y}{5}\)