S=5\2*4+5\4*6+...+5\48*50
tính hợp lí;5/2*4+5/4*6+5/6*8+...+5/48*50
Dat bieu thuc tren la A
2A=10/2.4+10/4.6+10/6.8+...+10/48.50
2A=5.(2/2.4+2/4.6+2/6.8+...+2/48.50)
2A=5.(1/2-1/4+1/4-1/6+1/6-1/8+..+1/48-1/50)
2A=5.(1/2-1/50)
2A=5.12/25
2A=12/5
A=12/5:2
A=12/5.1/2
A=6/5
= 5/2 . ( 1/2 - 1/4 + 1/4 - 1/6 + ...... + 1/48 - 1/50)
= 5/2 . ( 1/2 - 1/50)
= 5/2 . 12.25
=6/5
a=5/2*4+5/4*6+...+5/48*50
\(A=\frac{5}{2\times4}+\frac{5}{4\times6}+.....+\frac{5}{48\times50}\)
\(\Rightarrow\frac{2}{5}A=\frac{2}{5}\left(\frac{5}{2\times4}+\frac{5}{4\times6}+.....+\frac{5}{48\times50}\right)\)
\(\Rightarrow\frac{2}{5}A=\frac{2.5}{5.\left(2\times4\right)}+\frac{2.5}{5.\left(4\times6\right)}+.....+\frac{2.5}{5.\left(48\times50\right)}\)
\(\Rightarrow\frac{2}{5}A=\frac{2}{\left(2\times4\right)}+\frac{2}{\left(4\times6\right)}+.....+\frac{2}{\left(48\times50\right)}\)
\(\Rightarrow\frac{2}{5}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{48}-\frac{1}{50}\)
\(\Rightarrow\frac{2}{5}A=\frac{1}{2}-\frac{1}{50}\)
\(\Rightarrow\frac{2}{5}A=\frac{24}{50}\)
\(\Rightarrow A=\frac{24}{50}:\frac{2}{5}=\frac{24}{50}\times\frac{5}{2}=\frac{6}{5}\)
Sos
Biết C=5^50-5^48+5^46-5^44+...+5^6-5^4-5^2-1
25C=5^52-5^50+5^48-5^46+...+5^8-5^6+5^4-5^2
=>26C=5^52-1
=>\(C=\dfrac{5^{52}-1}{26}\)
Đề đúng rồi đúng ko em? Nghĩa là 2 số hạng cuối là \(-5^2-1\) chứ không phải \(+5^2-1\)?
\(C=5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4-1\)
\(=5^{48}\left(5^2-1\right)+5^{46}\left(5^2-1\right)+...+5^4\left(5^2-1\right)-5^2-1\)
\(=5^{48}.24+5^{46}.24+...+5^4.24-25-1\)
\(=5^{46}.5^2.24+5^{44}.5^2.24+...+5^2.5^2.24-26\)
\(=5^{46}.600+5^{44}.600+...+5^2.600-100+74\)
\(=100.\left(5^{46}.6+5^{44}.6+...+5^2.6-1\right)+74\)
Vậy C chia 100 dư 74
A) A= - ( 5 - 6 ) - ( 3-4+5-7)
B) P = ( 1+3+5+...+47+49)-(2+4+6+...+48+50)
A = - ( 5 - 6 ) - ( 3 - 4 + 5 - 7 )
A = -5 + 6 - 3 + 4 - 5 + 7
A = ( 6 + 4 ) + ( -5 + (-5) ) + ( -3 + 7 )
A = 10 + (-10) + 4
A = 0 + 4
A = 4
P = ( 1 + 3 + 5 + ... + 47 + 49 ) - ( 2 + 4 + 6 + ... + 48 + 50 )
P = \(\frac{\left(1+49\right)\cdot\left(\left(49-1\right):2+1\right)}{2}\) - \(\frac{\left(2+50\right)\cdot\left(\left(50-2\right):2+1\right)}{2}\)
P = \(625-650\)
P = \(-25\)
tính các tổng sau
A=1*2+2*3+3*4+4*5+5*6+6*7...+49*50
B=1*50+2*49+3*48+...+49*2+50*1
1/1*2*3*4+1/2*3*4*5+1/3*4*5*6+...+1/47*48*49*
50
42 : 7 48 : 6 63 : 7 35 : 7
......... ........... .......... ...........
......... ........... .......... ...........
......... ........... .......... ...........
42 : 2 48 : 4 69 : 3 50 : 5
......... ........... .......... ...........
......... ........... .......... ...........
S=1-2+3-4+5-.........-48+49-50
Tính S/P biết:
S = 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/49 + 1/50
P = 1/49 + 2/48 + 3/47 + ... + 48/2 +49/1
So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2
S=
=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50
P=
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50=1
vậy s/p = 1/50