Những câu hỏi liên quan
H24
Xem chi tiết
H24
23 tháng 2 2018 lúc 14:48

giup minh cau b thoi ak

Bình luận (0)
H24
Xem chi tiết
NL
28 tháng 6 2017 lúc 9:02

A B C H

Xét \(\Delta HAB\)và \(\Delta HCA\)có:

\(\widehat{AHB}=\widehat{CHA}=90^o\)

\(\widehat{HAB}=\widehat{HCA}\)(cùng phụ với \(\widehat{HAC}\))

Suy ra \(\Delta HAB\)đồng dạng với \(\Delta HCA\)(g.g)

Bình luận (0)
NL
Xem chi tiết
DH
28 tháng 3 2021 lúc 22:15

a) Xét tam giác \(HBA\)và tam giác \(ABC\)

\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)

\(\widehat{B}\)chung

Suy ra tam giác \(HBA\)đồng dạng với tam giác \(ABC\).

b) Xét tam giác \(ABC\)vuông tại \(A\):

\(BC^2=AB^2+AC^2\)(Định lí Pythagore)

\(\Leftrightarrow BC=\sqrt{AC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\).

\(AB^2=BH.BC\)(Hệ thức trong tam giác vuông)

\(\Leftrightarrow AH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)

\(BH=BC-BH=10-3,6=6,4\left(cm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
28 tháng 3 2021 lúc 22:17

(Bạn tự vẽ hình nhé).

a,Xét 2 tam giác vuông HBA và ABC có:

Góc H= góc A (=90 độ).

AB chung.

=> Tam giác HBA đồng dạng với tam giác ABC (ch-gv) (đpcm).

b, Áp dụng định lí Py-ta-go vào tam giác vuông ABC ta có:

BC2=  AB2 + AC2

Hay BC2 = 62 + 82 

               = 36 + 64

               = 100

=> BC= 10 (cm).

Ta có tam giác HBA đồng dạng với tam giác ABC (theo a)

=> BH/AB = AB/ BC = AH/AC

Hay BH/6 = 6/10 = AH/8

=> BH = 6.6/10 = 3,6 (cm).

      AH= 8.6/10 = 4,8 (cm).

Vậy BC=10 cm, BH=3,6 cm và AH=4,8 cm.

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
NT
25 tháng 4 2023 lúc 23:14

b: góc ADE+góc ABD=90 độ

góc AED=góc HEB=90 độ-góc DBC

mà góc ABD=góc DBC

nên góc ADE=góc AED

=>AD=AE

a: BD là phân giác

=>DA/AB=DC/BC

=>DA*BC=DC*AB

=>DC*AB=AE*BC

Bình luận (0)
TT
Xem chi tiết
TT
Xem chi tiết
H24
24 tháng 3 2019 lúc 13:41

A) Xét \(\Delta_VABH\) và \(\Delta_vCBA\):

\(\widehat{B}\): chung

\(\Rightarrow\Delta_vABH\sim\Delta_vCBA\left(gn\right)\)

B) Đề sai vì BC\(=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(\Rightarrow BE=10-4=6\left(cm\right)\)

\(AH=\frac{6.8}{10}=4,8\left(cm\right)\)

mà \(AH^2=BH.HC\) nên AH=BE

Vậy đề sai.

C) Có: \(BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)

\(S_{ABH}=\frac{1}{2},3,6.4,8=8,64\left(cm^2\right)\)

Bình luận (0)
H24
Xem chi tiết
NT
20 tháng 2 2021 lúc 20:53

Xét ΔABC có 

BE là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{EA}{AB}=\dfrac{EC}{BC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{EA}{8}=\dfrac{EC}{10}\)

mà EA+EC=AC(E nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{EA}{8}=\dfrac{EC}{10}=\dfrac{EA+EC}{8+10}=\dfrac{AC}{18}=\dfrac{9}{18}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{EA}{8}=\dfrac{1}{2}\\\dfrac{EC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}EA=4\left(cm\right)\\EC=5\left(cm\right)\end{matrix}\right.\)

Vậy: EA=4cm; EC=5cm

Bình luận (0)
HQ
Xem chi tiết
TN
Xem chi tiết