Cho a,b,c>0 và ab+bc+ca=1. chứng minh
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)
Cho a,b,c >0 và ab+bc+ca=1, chứng minh
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)
ko biết đúng hay sai
Theo cosi ab+bc+ac≥3\(\sqrt[3]{a^2b^2c^2}\) nên abc=<1/3
quy đồng thay abc=<1/3 vô
cho a , b , c >0. Chứng minh các bất đẳng thức :
1, ab + bc + ca \(\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2, \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3, \(ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1\)
4, \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
5, \(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1.
Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)
\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2.
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng vế với vế:
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3.
Từ câu b, thay \(c=1\) ta được:
\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)
4.
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
5.
\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)
Cộng vế với vế:
\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1. bđt được viết lại thành
\(ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)
Theo bđt AM-GM thì :
\(ab+bc\ge2\sqrt{ab\cdot bc}=2\sqrt{ab^2c}=2b\sqrt{ac}\)
Tương tự : \(bc+ca\ge2c\sqrt{ab}\); \(ab+ca\ge2a\sqrt{bc}\)
Cộng vế với vế
=> \(2\left(ab+bc+ca\right)\ge2\left(a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\right)\)
=> \(ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)( đpcm )
Dấu "=" xảy ra <=> a=b=c
Cho a,b,c>0, chứng minh:\(\frac{1}{a^2+ab+bc}+\frac{1}{b^2+bc+ca}+\frac{1}{c^2+ca+ab}\ge\frac{\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\)
Cho: a,b,c > 0 và a + b + c = 3.
Chứng minh rằng:
a) \(\frac{a+b}{1+a}+\frac{b+c}{1+b}+\frac{c+a}{1+c}\ge ab+bc+ca\)
b) \(\frac{a}{ab+b^3}+\frac{b}{bc+c^3}+\frac{c}{ca+a^3}\ge\frac{3}{2}\)
Đề chơi căng nhỉ?
a) Dễ chứng minh VP =< 3
BĐT \(\Leftrightarrow\left(\frac{a+b}{1+a}-1\right)+\left(\frac{b+c}{1+b}-1\right)+\left(\frac{c+a}{1+c}-1\right)\ge0\)
\(\Leftrightarrow\frac{b-1}{1+a}+\frac{c-1}{1+b}+\frac{a-1}{1+c}\ge0\)
\(\Leftrightarrow\frac{\left(b-1\right)^2}{\left(1+a\right)\left(b-1\right)}+\frac{\left(c-1\right)^2}{\left(1+b\right)\left(c-1\right)}+\frac{\left(a-1\right)^2}{\left(1+c\right)\left(a-1\right)}\) >=0
Áp dụng BĐT Cauchy-Schwarz dạng Engel vào VT ta có đpcm.
P/s: Èo, sao đơn giản thế nhỉ? Em có làm sai chỗ nào chăng?
a, Ta có \(\frac{a+b}{a+1}=\frac{\left(a+b\right)\left(a+1\right)-a\left(a+b\right)}{a+1}=a+b-\frac{a\left(a+b\right)}{a+1}\)
Mà \(\frac{1}{a+1}\le\frac{a+1}{4a}\)
=> \(\frac{a+b}{1+a}\ge a+b-\frac{\left(a+1\right)\left(a+b\right)}{4}=\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}a^2-\frac{1}{4}ab\)
Khi đó
\(Vt\ge\frac{3}{2}\left(a+b+c\right)-\frac{1}{4}\left(a^2+b^2+c^2\right)-\frac{1}{4}\left(ab+bc+ac\right)\)
=> \(VT\ge\frac{9}{2}-\frac{1}{4}\left(9-2ab-2bc-2ac\right)-\frac{1}{4}\left(ab+bc+ac\right)\)
=> \(VT\ge\frac{9}{4}+\frac{1}{4}\left(ab+bc+ac\right)\)
Lại có \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=3\)
=> \(VT\ge ab+bc+ac\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=1
b,Ta có \(\frac{a}{b\left(a+b^2\right)}=\frac{a+b^2-b^2}{b\left(a+b^2\right)}=\frac{1}{b}-\frac{b}{a+b^2}\)
Mà \(a+b^2\ge2b\sqrt{a}\)
=> \(\frac{a}{b\left(a+b^2\right)}\ge\frac{1}{b}-\frac{1}{2\sqrt{a}}\)
Lại có \(\frac{1}{\sqrt{a.1}}\le\frac{1}{2}\left(\frac{1}{a}+1\right)\)
=> \(\frac{a}{b\left(a+b^2\right)}\ge\frac{1}{b}-\frac{1}{4}.\left(\frac{1}{a}+1\right)\)
Khi đó
\(VT\ge\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)
Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)
=> \(VT\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=1
Bất đẳng thức được viết lại thành
\(\sum\frac{3-a}{1+a}\ge ab+bc+ca\)
Mà \(ab+bc+ca\le3\) nên ta chỉ cần chứng minh
\(\sum\frac{3-a}{1+a}\ge3\)
Ta chứng minh bất đẳng thức phụ sau
\(\frac{3-a}{1+a}\ge2-a\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)
Thiết lập các bất đẳng thức tương tự ta có điều phải chứng minh
Cho a,b,c ≥ 0 nhưng không đồng thời bằng 0 thỏa mãn ab + bc + ca = 1. Chứng minh rằng :
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)
bài hơi khoai
Không mất tính tổng quát giả sử \(c=max\left\{a,b,c\right\}\)
\(\Rightarrow2c\ge a+b\)
\(\Rightarrow c\ge\frac{a+b}{2}\)
Từ giả thiết \(\Rightarrow a,b\le1\)
\(\Rightarrow ab\le1\)( *)
Đặt \(P=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}-\frac{5}{2}\)
\(=\frac{1}{a+b}+\frac{1}{b+\frac{1-ab}{a+b}}+\frac{1}{a+\frac{1-ab}{a+b}}-\frac{5}{2}\)
Đặt \(S=\frac{1}{a+b+\frac{1}{a+b}}+a+b+\frac{1}{a+b}-\frac{5}{2}\)
Xét hiệu \(P-S=\)\(\frac{1}{a+b}+\frac{1}{b+\frac{1-ab}{a+b}}+\frac{1}{a+\frac{1-ab}{a+b}}-\frac{5}{2}-\)\(-\frac{1}{a+b+\frac{1}{a+b}}-a-b-\frac{1}{a+b}+\frac{5}{2}\)
\(=\frac{1}{\frac{ab+b^2+1-ab}{a+b}}+\frac{1}{\frac{a^2+ab+1-ab}{a+b}}-\frac{1}{\frac{\left(a+\right)^2+1}{a+b}}-\left(a+b\right)\)
\(=\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}-\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\)
Ta sẽ chứng minh \(\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}-\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\ge0\)
\(\Leftrightarrow\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}\ge\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\)
\(\Leftrightarrow\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge1+\frac{1}{1+\left(a+b\right)^2}\)
\(\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2+\left(a+b\right)^2}{1+\left(a+b\right)^2}\)
\(\Rightarrow\left(2+b^2+a^2\right)\left[1+\left(a+b\right)^2\right]\ge\left[2+\left(a+b\right)^2\right]\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow2+2\left(a+b\right)^2+\left(a+b\right)^2\left(a^2+b^2\right)+a^2+b^2\ge\left[2+\left(a+b\right)^2\right]\left(1+a^2+b^2+a^2b^2\right)\)
\(\Leftrightarrow2+2\left(a+b\right)^2+\left(a+b\right)^2\left(a^2+b^2\right)+a^2+b^2-2a^2b^2-\left(a+b\right)^2\left(a^2+b^2\right)-\left(a+b\right)^2a^2b^2\)\(-2-2\left(a^2+b^2\right)-\left(a+b^2\right)\ge0\)
\(\Leftrightarrow-2a^2b^2-\left(a+b\right)^2a^2b^2+a^2+b^2-\left(a+b\right)^2\ge0\)
\(\Leftrightarrow ab\left[ab\left(a+b\right)^2+2ab-2\right]\le0\)
\(\Leftrightarrow ab\left(a+b\right)^2+2ab-2\le0\)( do a,b \(\ge0\))
\(\Leftrightarrow ab\left(a+b\right)^2\le2\left(1-ab\right)\)
\(\Leftrightarrow ab\left(a+b\right)^2\le2c\left(a+b\right)\) (1)
Mà \(c\ge\frac{a+b}{2}\)
\(\Rightarrow2c\left(a+b\right)\ge\left(a+b\right)^2\)
Ta có: \(\left(a+b\right)^2\ge ab\left(a+b\right)^2\)
\(\Leftrightarrow\left(a+b\right)^2\left(1-ab\right)\ge0\)( đúng do (*) )
\(\Rightarrow\left(1\right)\)đúng
\(\Rightarrow P-S\ge0\)
\(\Rightarrow P\ge S\)
Ta phải chứng minh \(S\ge0\)
\(\Leftrightarrow\frac{1}{a+b+\frac{1}{a+b}}+a+b+\frac{1}{a+b}\ge\frac{5}{2}\)
\(\Leftrightarrow\frac{a+b}{1+\left(a+b\right)^2}+\frac{1+\left(a+b\right)^2}{a+b}\ge\frac{5}{2}\) (2)
Đặt \(x=\frac{1+\left(a+b\right)^2}{a+b}\)
Ta có: \(1+\left(a+b\right)^2\ge2\left(a+b\right)\)
\(\Leftrightarrow\left(a+b-1\right)^2\ge0\)( đúng )
\(\Rightarrow x=\frac{1+\left(a+b\right)^2}{a+b}\ge2\)
=> (2) có dạng \(x+\frac{1}{x}\ge\frac{5}{2}\)
\(\Leftrightarrow2x^2-5x+2\ge0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\ge0\)( đúng )
\(\Rightarrow S\ge0\)mà \(P\ge S\)
\(\Rightarrow P\ge0\)
\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=1\\ab+bc+ca=1\\ab\left[ab\left(a+b\right)^2+2ab-2\right]=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=c=1;b=0\\b=c=1;a=0\end{cases}}\)
sửa một chút là cái dòng thứ 4 là từ giả thiết\(\Rightarrow0\le a,b\le1\)
Cho a,b,c>0 và \(ab+bc+ca\ge\frac{4}{3}\).chứng minh
\(\sqrt{a^2+\frac{1}{\left(b+1\right)^2}}+\sqrt{b^2+\frac{1}{\left(c+1\right)^2}}+\sqrt{c^2+\frac{1}{\left(a+1\right)^2}}\ge\frac{\sqrt{181}}{5}\)
Cho a,b,c>0 và \(ab+bc+ca=1\). Chứng minh rằng:
\(\frac{1}{a^2+b^2}+\frac{1}{b^2+c^2}+\frac{1}{c^2+a^2}\ge\frac{5}{2}\)
Cho a,b,c>0 thỏa a + b + c =1. Chứng minh: \(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{15}{4}\)
Cho 3 số a,b,c >0 thỏa mãn ab+bc+ca=1
Chứng minh rằng:\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)
https://olm.vn/hoi-dap/detail/239526218296.html
Sử dụng phân tích tuyệt vời của Ji Chen:
\(VT-VP=\frac{4\left(a+b+c-2\right)^2+abc+3\Sigma a\left(b+c-1\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
Hãy xem phương pháp Buffalo-Way giải quyết nó!
Viết BĐT lại thành: \(\left(ab+bc+ca\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2\ge\frac{25}{4}\)
Giả sử \(a\ge b\ge c\) và đặt \(a=c+u+v,b=c+v\left(u,v\ge0\right)\). Sau khi quy đồng, bất đẳng thức trở thành:
128 c^6+4 u^5 v+19 u^4 v^2+30 u^3 v^3+15 u^2 v^4+c^5 (256 u+512 v)+c^4 (192 u^2+832 u v+832 v^2)+c^3 (96 u^3+528 u^2 v+1008 u v^2+672 v^3)+c^2 (40 u^4+224 u^3 v+488 u^2 v^2+528 u v^3+264 v^4)+c (8 u^5+60 u^4 v+152 u^3 v^2+168 u^2 v^3+100 u v^4+40 v^5) \(\ge0\) (hiển nhiên đúng)
P/s: Khúc cuối dài quá gõ công thức bị tràn hết màn hình nên đành gõ ngoài, thông cảm! Nhớ bài này có một cách dùng dồn biến mà nghĩ không ra.