Những câu hỏi liên quan
AM
Xem chi tiết
TD
10 tháng 12 2015 lúc 12:12

Vì n là số lẽ nên ta có : \(n=2k+1\left(k\in N\right)\). Thay vào :

\(\left(2k+1\right)^2-1=4k^2+4k+1-1=4k^2+4k=4k\left(k+1\right)\)

4 chia hết cho 4 ; \(k\left(k+1\right)\)là 2 số tự nhiên liên tiếp nên chia hết cho 2 \(\Rightarrow\left(2k+1\right)^2-1\) chia hết cho 8 (vì 4.2=8).

Vậy với mọi số tự nhiên n, nếu n là số lẽ thì \(n^2-1\) chia hết cho 8.

 

 

Bình luận (0)
TT
Xem chi tiết
HN
5 tháng 7 2016 lúc 18:39

Ta có : n là số tự nhiên lẻ => n = 2k+1 (\(k\in N^{\text{*}}\))

\(n^2-1=\left(2k+1\right)^2-1=4k^2+4k+1-1=4k\left(k+1\right)\)

Vì k(k+1) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2.

Do đó : 4k(k+1) chia hết cho 2.4=8

Bình luận (0)
DB
Xem chi tiết
DH
29 tháng 10 2021 lúc 0:25

\(n^2+n+1=n\left(n+1\right)+1\)

có \(n\left(n+1\right)\)là tích hai số tự nhiên liên tiếp nên \(n\left(n+1\right)\)là số chẵn

Do đó \(n\left(n+1\right)+1\)là số lẻ. 

Ta có đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
HA
15 tháng 9 2016 lúc 19:22

\(n^3-n\)=   \(n\left(n^2-1\right)\)=  \(\left(n-1\right)n\left(n+1\right)\)

Do (n-1)n(n+1) la h cua 3 so tự nhiên liên tiếp nên chia het cho 2 va 3

mà (2,3) =1 nen h chia het cho 6

Lại có n lẻ nên tích sẽ có 1 số chia hết cho 4

=> (n-1)n(n+1) chia hết cho 4*6 = 24

Hay \(n^3-1\)chia hết cho 24 với mọi số tự nhiên n lẻ

Đúng thì

Bình luận (0)
TN
9 tháng 11 2017 lúc 22:56

Theo mình thì khi ta có a chia hết c, b chia hết cho c và (a,b)=1 thì ta mới có thể kết luận là ab chia hết cho c. 

Ví dụ: 12 chia hết cho 4, 12 chia hết cho 6 nhưng 12 không chia hết cho 24. 

Mình chỉ biết như thế còn không biết cách giải mong các bạn giúp đỡ.

Bình luận (0)
H24
Xem chi tiết
IM
15 tháng 9 2016 lúc 19:20

Vì n lẻ 

=> n = 2k + 1 ( với k laf số tự nhiên )

\(\Rightarrow n^3-n=\left(2k+1\right)^3-\left(2k+1\right)\)

\(\Rightarrow n^3-n=\left(2k+1\right)\left[\left(2k+1\right)^2-1\right]\)

\(\Rightarrow n^3-n=\left(2k+1\right)\left(2k+2\right)2k\)

Vì 2k ; 2k + 1 ; 2k + 2 là 3 số tự nhiên liên tiếp .

\(\Rightarrow\left(2k+1\right)\left(2k+2\right)2k\) chia hết cho 3

\(\Rightarrow n^3-n⋮3\)

Mặt khác : \(n^3-n=\left(2k+1\right)\left(2k+2\right)2k\)

\(\Rightarrow n^3-n=\left(2k+1\right)2\left(k+1\right)2k\)

\(\Rightarrow n^3-n=\left(2k+1\right)4\left(k+1\right)k\) 

Xét thấy k và k+1 là 2 số tự nhiên liên tiếp .

=> k(k+1) chia hết cho 2

\(\Rightarrow\left(2k+1\right)4\left(k+1\right)k⋮8\)

\(\Rightarrow n^3-n⋮8\) 

Mà (3;8) = 1

=> n- n chia hết cho 24 ( đpcm )

Bình luận (1)
TH
27 tháng 6 2019 lúc 9:46

Ta có: n3 - n = (n - 1)n(n + 1)

Trong 3 số tự nhiên liên tiếp có đúng một số chia hết cho 3 \(\Rightarrow\) (n - 1)n(n + 1) \(⋮\) 3 (1)

Vì n lẻ nên n - 1 và n + 1 chẵn. Trong hai số chẵn liên tiếp có đúng một số chia hết cho 4 \(\Rightarrow\) \(\left[{}\begin{matrix}n-1⋮4\\n+1⋮4\end{matrix}\right.\) \(\Rightarrow\) (n - 1)n(n + 1) \(⋮\) 8 (2)

Từ (1) và (2) suy ra (n - 1)n(n + 1) \(⋮\) 3; 8

\(\Rightarrow n^3-n⋮24\)

Bình luận (0)
H24
Xem chi tiết
TL
3 tháng 2 2017 lúc 17:51

n lẻ nên n^3 lẻ. vậy n^3+1 chẵn. mà số chính phương chỉ có 2 là chẵn, còn lại lẻ ->đpcm

Bình luận (0)
HB
3 tháng 2 2017 lúc 17:57

n có dạng 2k+1
n3+1 = (2k+1)3+1 = 8k3+12k2+6k+1+1=8k3+12k2+6k+2
Vì 8k3;6k và 2 không thể là số chính phương nên suy ra n3+1 không là số chính phương khi n lẻ.

Bình luận (0)
CG
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NL
9 tháng 11 2021 lúc 11:17

n2+n+1= n(n+1)+1

Vì n và n+1 là 2 số tự nhiên liên tiếp =>n(n+1)\(⋮\)2 => n(n+1) chẵn => n(n+1)+1 lẻ => điều phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa