Những câu hỏi liên quan
PB
Xem chi tiết
CT
15 tháng 3 2017 lúc 3:33

Ta có p(x) + q(x)

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Bậc của đa thức p ( x )   +   q ( x )   =   4 x 4   +   6 x 3   -   6 x 2   +   6 x   -   6   l à   4

Chọn đáp án C

Bình luận (0)
H24
Xem chi tiết
DD
Xem chi tiết
KR
27 tháng 6 2023 lúc 12:04

`@` `\text {Ans}`

`\downarrow`

`a)`

\(P(x) = 5x^3 + 3 - 3x^2 + x^4 - 2x - 2 + 2x^2 + x\)

`= x^4 + 5x^3 + (-3x^2 + 2x^2) + (-2x+x) + (3-2)`

`= x^4 + 5x^3 - x^2 - x + 1`

\(Q(x) = 2x^4 + x^2 + 2x + 2 - 3x^2 - 5x + 2x^3 - x^4\)

`= (2x^4 - x^4) + 2x^3 + (x^2 - 3x^2) + (2x-5x) + 2`

`= x^4 + 2x^3 - 2x^2 - 3x +2`

`b)`

`P(x)+Q(x) = (x^4 + 5x^3 - x^2 - x + 1) + (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 + x^4 + 2x^3 - 2x^2 - 3x +2`

`= (x^4+x^4)+(5x^3 + 2x^3) + (-x^2 - 2x^2) + (-x-3x) + (1+2)`

`= 2x^4 + 7x^3 - 3x^2 - 4x + 3`

`P(x)-Q(x)=(x^4 + 5x^3 - x^2 - x + 1) - (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 - x^4 - 2x^3 + 2x^2 + 3x -2`

`= (x^4 - x^4) + (5x^3 - 2x^3) + (-x^2+2x^2)+(-x+3x)+(1-2)`

`= 3x^3 + x^2 + 2x - 1`

`Q(x)-P(x) = (x^4 + 2x^3 - 2x^2 - 3x +2)-(x^4 + 5x^3 - x^2 - x + 1)`

`= x^4 + 2x^3 - 2x^2 - 3x +2-x^4 - 5x^3 + x^2 + x - 1`

`= (x^4-x^4)+(2x^3 - 5x^3)+(-2x^2+x^2)+(-3x+x)+(2-1)`

`= -3x^3 - x^2 - 2x + 1`

`@` `\text {Kaizuu lv u.}`

Bình luận (0)
NT
Xem chi tiết
H24
21 tháng 3 2023 lúc 20:04

`a,A(x) =2x^3 -x^4 +2x-4+3x^2 -2x^3+x^4`

`= ( 2x^3-2x^3) +(-x^4+x^4) + 2x -4+3x^2`

`= 0+0+ 2x -4+3x^2`

`= 3x^2 +2x-4`

`b, M(x)=A(x)+B(x)`

`M(x)= 3x^2 +2x-4 + x-2`

`= 3x^2 + 3x-6`

`b,  N(x) = A(x) - B(x)`

`N(x)=  3x^2 +2x-4 -(x-2)`

`= 3x^2 +2x-4 -x+2`

`= 3x^2 + x -2`

`c,` Ta có :

`x-2=0`

`=> x=0+2`

`=>x=2`

 

Bình luận (0)
NQ
Xem chi tiết
TL
10 tháng 4 2020 lúc 17:07

dsssws

Bình luận (0)
 Khách vãng lai đã xóa
LP
Xem chi tiết
AH
25 tháng 10 2021 lúc 19:40

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

Bình luận (0)
AH
25 tháng 10 2021 lúc 19:44

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

Bình luận (0)
LH
Xem chi tiết
KR
3 tháng 4 2023 lúc 21:20

`a,`

`P(x)=5x^3+3-3x^2+x^4-2x-2+2x^2+x`

`P(x)=x^4+5x^3+(-3x^2+2x^2)+(-2x+x)+(3-2)`

`P(x)=x^4+5x^3-x^2-x+1`

`Q(x)=2x^4+x^2+2x+2-3x^2-5x+2x^3-x^4`

`Q(x)=(2x^4-x^4)+2x^3+(x^2-3x^2)+(2x-5x)+2`

`Q(x)=x^4+2x^3-2x^2-3x+2`

`b,`

`P(x)-Q(x)=(x^4+5x^3-x^2-x+1)-(x^4+2x^3-2x^2-3x+2)`

`P(x)-Q(x)= x^4+5x^3-x^2-x+1-x^4-2x^3+2x^2+3x-2`

`P(x)-Q(x)=(x^4-x^4)+(5x^3-2x^3)+(-x^2+2x^2)+(-x+3x)+(1-2)`

`P(x)-Q(x)=3x^3+x^2+2x-1`

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 8 2018 lúc 16:41

 P(x) = 3x2 – 5 + x4 – 3x3 – x6 – 2x2 – x3

= – x6 + x4 + (– 3x3 – x3) + (3x2 – 2x2) – 5

= – x6 + x4 – 4x3 + x2 – 5.

= – 5+ x2 – 4x3 + x4 – x6

Và Q(x) = x3 + 2x5 – x4 + x2 – 2x3 + x –1

= 2x5 – x4 + (x3 – 2x3) + x2 + x –1

= 2x5 – x4 – x3 + x2 + x –1.

= –1+ x + x2 – x3 – x4 + 2x5

Bình luận (0)
H24
Xem chi tiết
AH
15 tháng 9 2021 lúc 9:44

Lời giải:
a. $f(x)=x^4-3x^2+2x-7=x^3(x+2)-2x^2(x+2)+x(x+2)-7$

$=(x+2)(x^3-2x^2+x)-7=g(x)(x^3-2x^2+x)-7$

Vậy $f(x)$ chia $g(x)$ được thương là $x^3-2x^2+x$ và dư là $-7$

b. Theo phần a $f(x)=(x^3-2x^2+x)g(x)-7$

Với $x$ nguyên, để $f(x)\vdots g(x)$ thì $7\vdots g(x)$

$\Leftrightarrow x+2$ là ước của $7$

$\Rightarrow x+2\in\left\{\pm 1;\pm 7\right\}$

$\Leftrightarrow x\in\left\{-3; -1; 5; -9\right\}$

c.

Theo định lý Bezout về phép chia đa thức, để $K(x)=-2x^3+x-m\vdots x+2$ thì: $K(-2)=0$

$\Leftrightarrow -2(-2)^3+(-2)-m=0$

$\Leftrightarrow 14-m=0$

$\Leftrightarrow m=14$

Bình luận (0)