H24

Cho đa thức: f(x)=x4-3x2+2x-7 và g(x)=x+2
a) Thực hiện phép chia f(x) : g(x)
b) Tìm số nguyên x để f(x) chia hết cho g(x)
c) Tìm m để đa thức k(X)= -2x3+x-m chia hết cho g(x)

AH
15 tháng 9 2021 lúc 9:44

Lời giải:
a. $f(x)=x^4-3x^2+2x-7=x^3(x+2)-2x^2(x+2)+x(x+2)-7$

$=(x+2)(x^3-2x^2+x)-7=g(x)(x^3-2x^2+x)-7$

Vậy $f(x)$ chia $g(x)$ được thương là $x^3-2x^2+x$ và dư là $-7$

b. Theo phần a $f(x)=(x^3-2x^2+x)g(x)-7$

Với $x$ nguyên, để $f(x)\vdots g(x)$ thì $7\vdots g(x)$

$\Leftrightarrow x+2$ là ước của $7$

$\Rightarrow x+2\in\left\{\pm 1;\pm 7\right\}$

$\Leftrightarrow x\in\left\{-3; -1; 5; -9\right\}$

c.

Theo định lý Bezout về phép chia đa thức, để $K(x)=-2x^3+x-m\vdots x+2$ thì: $K(-2)=0$

$\Leftrightarrow -2(-2)^3+(-2)-m=0$

$\Leftrightarrow 14-m=0$

$\Leftrightarrow m=14$

Bình luận (0)

Các câu hỏi tương tự
CI
Xem chi tiết
PK
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DP
Xem chi tiết
VT
Xem chi tiết
HK
Xem chi tiết