P2
1, với giá trị nào của k thì pt x-ky-1 nhận cặp số (1;2) làm nghiệm?a, k2                   b, k1                       c, k-1                               d, k02, cặp số (x0; y0) là nghiệm của hệ pt left{{}begin{matrix}x-y-2x1end{matrix}right. giá trị biểu thức x^2_0+y_0 bằng a, 4                       b,5                            c, 10                                  d, 73, hàm số y5x2 nghịch biến khi a, x0                   b, x0                        c, xinR                             ...
Đọc tiếp

Những câu hỏi liên quan
LT
Xem chi tiết
NN
Xem chi tiết
LS
Xem chi tiết
NA
23 tháng 6 2018 lúc 20:57

b1           \(\frac{x+a}{x+1}+\frac{x-2}{x}=2\)

ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)

\(\Leftrightarrow x\left(x+a\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)

\(\Leftrightarrow x^2+ax+x^2-x-2=2x^2+2x\)

\(\Leftrightarrow ax-3x=2\)

\(\Leftrightarrow\left(a-3\right)x=2\)

để pt vô nghiệm  thì a-3=0 <=>a=3 thì pt vô nghiệm

2,\(4x-k+4=kx+k\)

\(\Leftrightarrow4x-kx=2k-4\)

\(\Leftrightarrow\left(4-k\right)x=2k-4\)

để pt có nghiệm duy nhất thì 4-k khác 0 <=> k khác 4 thì pt có nghiệm duy nhất là\(\frac{2k-4}{4-k}\)

pt vô nghiệm thì 4-k=0 <=.>k=4 

Bình luận (0)
SS
Xem chi tiết
TA
Xem chi tiết
NH
2 tháng 5 2018 lúc 15:57

a,thay k=0 vào PT ta có

\(9x^2-25=0\)

\(\Leftrightarrow9\left(x^2-\left(\frac{5}{3}\right)^2\right)=0\)

\(\Leftrightarrow9\left(x-\frac{5}{3}\right)\left(x+\frac{5}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}=0\\x+\frac{5}{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-\frac{5}{3}\end{cases}}\)

b,thay x=1 vào PT ta  có

\(9-25-k^2-2k=0\)

\(\Leftrightarrow k^2+2k+16=0\)

\(\Leftrightarrow\left(k+1\right)^2+15\ge0\)

Vậy ko có giá tri k thỏa mãn ĐK bài toán

Bình luận (0)
YN
22 tháng 2 2022 lúc 20:13

`Answer:`

`a)` Thay `k=0` vào phương trình được:

`9x^2-25=0`

`<=>(3x-5)(3x+5)=0`

`<=>3x+5=0` hoặc `3x-5=0`

`<=>x=-5/3` hoặc `x=5/3`

`b)` Thay `x=-1` vào phương trình được:

`9-25-k^2+2k=0`

`<=>-k^2+2k-16=0`

`<=>-(k^2-2k+1)-15=0`

`<=>-(k-1)^2-15=0`

Mà `-(k-1)^2<=0∀k=>-(k-1)^2-15<0`

Vậy phương trình vô nghiệm.

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
H24
18 tháng 5 2018 lúc 19:25

tra góc le đi

Bình luận (0)
AT
Xem chi tiết
H24
9 tháng 12 2021 lúc 20:44

a) khi m khác 1/2

b)khi m >1

c) khi K<5

Bình luận (0)
TN
Xem chi tiết
NT
11 tháng 1 2021 lúc 22:24

b)

Để hàm số \(y=\left(1-k^2\right)x-1\) là hàm số bậc nhất thì \(1-k^2\ne0\)

\(\Leftrightarrow k^2\ne1\)

hay \(k\notin\left\{1;-1\right\}\)

Để hàm số \(y=\left(1-k^2\right)x-1\) nghịch biến trên R thì \(1-k^2< 0\)

\(\Leftrightarrow k^2>1\)

\(\Leftrightarrow\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\)

Kết hợp ĐKXĐ, ta được: \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\)

Vậy: Khi \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\) thì hàm số \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\) nghịch biến trên R

Bình luận (0)
NN
Xem chi tiết

Bạn ơi  dài  wa

Đừng

Sai 

nha!

:D

Bình luận (0)
H24
9 tháng 4 2018 lúc 17:11

a)

(pt1) ; 2k +1 =5 => k =2 

(pt2):  2 -1 = vậy k =2 nhận

b)

hệ có nghiệm duy nhất;  <=> k khác -1  

Bình luận (0)

a) (pt1) ; 2k +1 =5 => k =2 

(pt2):  2 -1 = vậy k =2 nhận 

Bình luận (0)