x2+2\(\sqrt{x-2}\) = 5x-8
Bài 1 GIẢI PHƯƠNG TRÌNH:
a) \(\sqrt{x-5}=\sqrt{3-x}\)
b) \(\sqrt{4-5x}=\sqrt{2-5x}\)
c) x2+4x+5=2\(\sqrt{2x+3}\)
d) \(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)
\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy pt vô nghiệm
\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)
\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
a) \(\sqrt{x-5}=\sqrt{3-x}\)
⇔\(\left(\sqrt{x-5}\right)^2=\left(\sqrt{3-x}\right)^2\)
⇔\(x-5=3-x\)
⇔\(x=4\)
b) \(\sqrt{4-5x}=\sqrt{2-5x}\)
⇔\(\left(\sqrt{4-5x}\right)^2=\left(\sqrt{2-5x}\right)^2\)
⇔\(4-5x=2-5x\)
⇔\(2=0\) (Vô lí)
\(4\sqrt{x+1}\) = x2 - 5x + 4
\(\sqrt{x}\) - 4 + ( \(\sqrt{x}\) + 2)2 = 0
thu gọn biểu thức
a) (6x-2)2+4(3x-1)(2+y)+(y+2)2-(6x+y)2
b)5(2x-1)2+2(x-1)(x+3)-2(5-2x)2-2x(7x+12)
c)2(5x-1)(x2-5x+1)+(x2-5x+1)2+(5x-1)2-(x2-1)(x2+1)
d)(x2+4)2-(x2+4)(x2-4)(x2+16)-8(x-4)(x+4)
`#3107`
`a)`
`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`
`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`
`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`
`= (12x + y - 2)(2 - y + 2 + y)`
`= (12x + y - 2)*4`
`= 48x + 4y - 8`
`b)`
\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)
`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`
`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`
`= - 51`
`c)`
\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)
`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`
`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`
`= 1`
`d)`
\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)
`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`
`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`
`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`
`= x^6 + 16x^4 - 24x^2 - 128`
Giải các bất phương trình sau:
a.(x+1)(-x2+3x-2)<0
b.\(\sqrt{x^2-5x+4}+2\sqrt{x+5}>2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
Giải phương trình : x2 +2( 2 + \(\sqrt{x-1}\) ) =5x
\(x^2+2\left(2+\sqrt{x-1}\right)=5x\)
\(\Leftrightarrow x^2+4+2\sqrt{x-1}-5x=0\)
\(\Leftrightarrow x^2-5x+2\sqrt{x-1}+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(x^2+2\left(2+\sqrt{x-1}\right)=5x\left(1\right)\)
Đk: \(x\ge1\)
\(\left(1\right)\Leftrightarrow x^2-5x+4+2\sqrt{x-1}=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)-\left[\left(x-1\right)-2\sqrt{x-1}+1\right]=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(\sqrt{x-1}-1\right)^2=0\)
\(\Leftrightarrow\left(x+\sqrt{x-1}-3\right)\left(x-\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{x-1}-3=0\left(2\right)\\x-\sqrt{x-1}-1=0\left(3\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left(x-1\right)+\sqrt{x-1}-2=0\)
\(\Leftrightarrow\left(x-1\right)-\sqrt{x-1}+2\sqrt{x-1}-2=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-1\right)+2\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-1}+2\right)=0\)
\(\Leftrightarrow\sqrt{x-1}-1=0\) (vì \(\sqrt{x-1}+2>0\))
\(\Leftrightarrow x=2\left(nhận\right)\)
\(\left(3\right)\Leftrightarrow\left(x-1\right)-\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\left(nhận\right)\)
Vậy phương trình (1) có 2 nghiệm là \(x=1\text{v}àx=2\)
giải phương trình :
(x2+2)\(\sqrt{x^2+x +1}+x^3-3x^2-5x+2=0\)
\(\Leftrightarrow\left(x^2+2\right)\sqrt{x^2+x+1}-2\left(x^2+2\right)+x^3-x^2-5x+6=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(\sqrt{x^2+x+1}-2\right)+\left(x-2\right)\left(x^2+x-3\right)=0\)
\(\Leftrightarrow\dfrac{\left(x^2+2\right)\left(x^2+x-3\right)}{\sqrt{x^2+x+1}+2}+\left(x-2\right)\left(x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x^2+x-3\right)\left(\dfrac{x^2+2}{\sqrt{x^2+x+1}+2}+x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-3=0\Rightarrow x=...\\x^2+2=\left(2-x\right)\left(\sqrt{x^2+x+1}+2\right)\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2+2x-2=\left(2-x\right)\sqrt{x^2+x+1}\)
Đặt \(\sqrt{x^2+x+1}=t>0\Rightarrow x^2=t^2-x-1\)
\(\Rightarrow t^2+x-3=\left(2-x\right)t\)
\(\Leftrightarrow t^2+\left(x-2\right)t+x-3=0\)
\(\Leftrightarrow t^2-1+\left(x-2\right)\left(t+1\right)=0\)
\(\Leftrightarrow\left(t+1\right)\left(t+x-3\right)=0\)
\(\Leftrightarrow t=3-x\)
\(\Leftrightarrow\sqrt{x^2+x+1}=3-x\) (\(x\le3\))
\(\Leftrightarrow x^2+x+1=x^2-6x+9\)
\(\Leftrightarrow x=\dfrac{8}{7}\)
2x2+5x+3=0
(x-\(\sqrt{2}\) )-3(x2-2)=0
\(2x^2+5x+3=0\)
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=-1\end{matrix}\right.\)
Vậy \(S=\left\{-1;-\dfrac{3}{2}\right\}\)
\(\left(x-\sqrt{2}\right)-3\left(x^2-2\right)=0\)
\(\Leftrightarrow x-\sqrt{2}-3x^2+6=0\)
\(\Leftrightarrow-3x^2+x+6-\sqrt{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{1}{6}-\dfrac{\sqrt{73-3\sqrt{32}}}{6}\\x_2=\dfrac{\sqrt{73-3\sqrt{32}}}{6}+\dfrac{1}{6}\end{matrix}\right.\)
1\(\sqrt{5+2\sqrt{8}}-\sqrt{5-2\sqrt{8}}\) 2)\(\dfrac{\sqrt{x^2+2\sqrt{3x}+3}}{x^2-3}\) 3) \(\dfrac{\sqrt{x^2-5x+6}}{\sqrt{x-2}}\) 4)\(\dfrac{\sqrt{\left(x-4\right)^2}}{x^2-5x+4}\) 5) \(\dfrac{3x+1}{\sqrt{9x^2+6x+1}}\)
Rút gọn các biểu thức
a. x(2x2 – 3) – x2(5x + 1) + x2
b. 3x(x – 2) – 5x(1 – x) – 8(x2 – 3)
c. 1/2 x2(6x – 3) – x( x2 + 1/2 (x + 4)
a. x(2x2 – 3) – x2(5x + 1) + x2
= 2x3 – 3x – 5x3 – x2 + x2 = -3x – 3x3
b. 3x(x – 2) – 5x(1 – x) – 8(x2 – 3)
= 3x2 – 6x – 5x + 5x2 – 8x2 + 24
= - 11x + 24
c. 1/2 x2(6x – 3) – x( x2 + 1/2 (x + 4)
= 3x3 - 3/2 x2 – x3 - 1/2 x + 1/2 x + 2
= 2x3 - 3/2 x2 + 2
a, x(2x2-3)-x2(5x+1)x2
=2x3-3x-5x3- x2+x2=-3x-3x3
học tốt nhé!!
b, 3x(x-2)-5x(1-x)-8(x2-3)
=3x2-6x-5x+5x2-8x2+24
=-11x+24