Rút gọn:
\(\dfrac{\left(-2\right)^3.9^3.5^5.7.8}{3^6.4^4.25^3.14}\)
rút gọn các phân số sau
\(\dfrac{2.\left(-13\right).9.10}{\left(-3\right).4.\left(-5\right).26}\)
\(\dfrac{2^2.2^3.5^7}{2^3.3^4.5^6}\)
a: \(=\dfrac{-4\cdot13\cdot9\cdot5}{3\cdot4\cdot5\cdot2\cdot13}=\dfrac{3}{2}\)
b: \(=\dfrac{1}{2}\cdot\dfrac{1}{3}\cdot5=\dfrac{5}{6}\)
\(3.8.5^2+2.4^3.12+\left(2^3+3\right).6.4\)
\(600:\left\{450-\left[450-\left(2^3.5^2\right)\right]\right\}\)
Rút gọn phân số:
\(\frac{2^3.3^3.5^3.7.8}{3.2^4.5^3.14}\)
\(\frac{2^3.3^3.5^3.7.8}{3.2^4.5^3.14}=\frac{2^3.3^3.5^3.7.2^3}{3.2^4.5^3.2.7}\)
\(=\frac{2^6.3^3.5^3.7}{2^5.3.5^3.7}=\frac{2.3^2.1.1}{1.1.1.1}=2.3^2\)
\(=2.9=18\)
\(\frac{2^3.3^3.5^3.7.8}{3.2^4.5^3.14}=\frac{1.3^2.1.1.8}{1.2.1.2}=\frac{3.3.4}{2.1}=\frac{3.3.2}{1}=18\)
\(...=\frac{2^6.3^3.5^3.7}{2.^53.5^3.7}=18\)
Rút gọn phân số sau :
\(\frac{2^3.3^3.5^3.7.8}{3.2^4.5^3.14}\)
\(\frac{2^3.3^3.5^3.7.8}{3.2^4.5^3.14}\)mk viết như vầy bn cố gắng hiểu nhé:.
23.33.53.7.8/ 3.24.53.14
= 23.33.53.7.8/3.24.53.7.2
=23.33.53.8/3.24.53.2
=23.33.53.23/24.2.53
= 23.23.33.53/ 24.2.53
= 26. 33.53/ 25. 53
= 25.2.33.53/25.53
= 2.33/1
= 2. 27/1
= 54/1 = 54
Thế nha bn, chúc bn học tốt!
Rút gọn phân số:
a) \(\dfrac{2929-101}{2.1149+404}\)
b) \(\dfrac{6.9-2.17}{63.3-119}\)
c) \(\dfrac{3.13-13.18}{15.40-80}\)
d) \(\dfrac{-1997-1996+1}{\left(-1995\right).\left(-1997\right)+1996}\)
e) \(\dfrac{2.3+4.6+14.21}{3.5+6.10+21.35}\)
g) \(\dfrac{\left(-5\right)^3.40.4^3}{135.\left(-3\right)^{14}.\left(-100\right)^0}\)
h) \(\dfrac{18.34+\left(-18\right).124}{-36.17+9.\left(52\right)}\)
j) \(\dfrac{9.11+32.9}{23.15+12.23}\)
k) \(\dfrac{12.13+24.26+36.39}{24.26+48.52+72.78}\)
b) \(\dfrac{6\cdot9-2\cdot17}{63\cdot3-119}\)
\(=\dfrac{2\left(3\cdot9-17\right)}{7\cdot\left(3\cdot9-17\right)}\)
\(=\dfrac{2}{7}\)
Rút gọn phân số:
\(\frac{\left(-2^3\right).3^3.5^3.7.8}{3.5^3.42.2^4}\)
\(\frac{2^6.3.5^3.3.2.7}{2^4.3.5^3.6.7}=\frac{2^2}{1}=4\)
Rút gọn biểu thức:
A)(x+1)+(x+2)+(x+3)+...+(x+2010)
B)\(\frac{2^3.3^3.5^3.7.8}{3.^{ }2^4.5^3.14}\)
B/ 233×32×53×7×8
3×23×2 ×53×7×2
=32×8
2×2
=18
\(\dfrac{2^4.5^2.7}{2^3.5.7^2.11}\);\(\dfrac{2^3.3^3.5^3.7.8}{3.2^4.5^3.14}\)
\(\dfrac{4^2.5.11}{44.20}\);\(\dfrac{13.15.16}{18.65.7};\dfrac{7.2.8.5^2}{14.2.5}\)
\(\dfrac{2^3.3^3.5}{3.2^3.5^3}\)
a) \(\dfrac{2^4\cdot5^2\cdot7}{2^3\cdot5\cdot7^2\cdot11}=\dfrac{2^3\cdot5\cdot10\cdot7}{2^3\cdot5\cdot7\cdot77}=\dfrac{10}{77}\)
\(\dfrac{2^3\cdot3^3\cdot5^3\cdot7\cdot8}{3\cdot2^4\cdot5^3\cdot14}=\dfrac{2^3\cdot3\cdot5^3\cdot7\cdot3^2\cdot8}{3\cdot2^3\cdot2\cdot5^3\cdot14}=\dfrac{7\cdot3^2\cdot8}{2\cdot14}=\dfrac{63\cdot8}{2\cdot14}=18=\dfrac{1386}{77}\)
rút gọn biểu thức :
N = 1 + \(\left(\dfrac{1}{2}\right)\) + \(\left(\dfrac{1}{2}\right)^2\) + \(\left(\dfrac{1}{2}\right)^3\) + ... + \(\left(\dfrac{1}{2}\right)^{100}\)
\(N=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{100}\)
\(\Rightarrow2N=2+1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}\)
\(\Rightarrow N=2N-N=2+1+\dfrac{1}{2}+...+\left(\dfrac{1}{2}\right)^{99}-1-\dfrac{1}{2}-...-\left(\dfrac{1}{2}\right)^{100}=2-\left(\dfrac{1}{2}\right)^{100}\)
\(N=1+\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\)
\(\dfrac{1}{2}N=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{101}\)
\(\dfrac{1}{2}N-N=\left(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{101}\right)\)
\(-\left(1+\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\right)\)
\(-\dfrac{1}{2}N=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^{101}-1\)
\(N=\dfrac{-\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^{101}}{-\dfrac{1}{2}}\)