Cho a>=0, b>=0, c>=0, a+b+c=1
Tìm GTLN của M=\(\sqrt{2a^2+3a+4}+\sqrt{2b^2+3b+4}+\sqrt{2c^2+3c+4}\)
Cho a,b,c > 0 thỏa mãn a+b+c =1
Tìm giá trị lớn nhất của \(A=\sqrt{a+2b+3c}+\sqrt{b+2c+3a}+\sqrt{c+2a+3b}\)
Câu hỏi của Bùi Minh Khang - Toán lớp 9 | Học trực tuyến
Cho a,b,c >0 thỏa mãn \(a+b+c=\sqrt{6063}\):
Tìm GTLN của biểu thức :
\(P=\dfrac{2a}{\sqrt{2a^2+2021}}+\dfrac{2b}{\sqrt{2b^2+2021}}+\dfrac{2c}{\sqrt{2c^2+2021}}\)
\(a+b+c=\sqrt{6063}\Leftrightarrow\dfrac{a}{\sqrt{2021}}+\dfrac{b}{\sqrt{2021}}+\dfrac{c}{\sqrt{2021}}=\sqrt{3}\)
Đặt \(\left(\dfrac{a}{\sqrt{2021}};\dfrac{b}{\sqrt{2021}};\dfrac{c}{\sqrt{2021}}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{3}\)
\(P=\dfrac{2x}{\sqrt{2x^2+1}}+\dfrac{2y}{\sqrt{2y^2+1}}+\dfrac{2z}{\sqrt{2z^2+1}}\)
Ta có đánh giá:
\(\dfrac{x}{\sqrt{2x^2+1}}\le\dfrac{3\sqrt{15}x+2\sqrt{5}}{25}\)
Thật vậy, BĐT tương đương:
\(\left(\sqrt{3}x-1\right)^2\left(9x^2+10\sqrt{3}x+2\right)\ge0\) (luôn đúng)
Tương tự và cộng lại:
\(P\le\dfrac{6\sqrt{15}\left(x+y+z\right)+12\sqrt{5}}{25}=\dfrac{6\sqrt{5}}{5}\)
Cho a; b; c là các số thực dương thỏa mãn a+b+c=1
Tìm GTLN: P=\(\sqrt{a+2b+3c}+\sqrt{b+2c+3a}+\sqrt{c+2a+3b}\)
Bunyakovsky:
\(P^2=\left(\sqrt{a+2b+3c}+\sqrt{b+2c+3a}+\sqrt{c+2a+3b}\right)^2\)
\(\le\left(1^2+1^2+1^2\right)\left(a+2b+3c+b+2c+3a+c+2a+3b\right)\)
\(=3.6\left(a+b+c\right)=18\)
\(P\le\sqrt{18}\)
"=" khi \(a=b=c=\dfrac{1}{3}\)
Need some helps!
1. Cho a, b, c > 0 tm a + b + c = 1. Tìm gtln của bt sau:
\(P=\sqrt{a+2b+3c}+\sqrt{b+2c+3a}+\sqrt{c+2a+3b}.\)
2. Cho x, y > 1 tm x + y = 3. Tìm gtnn của bt sau:
\(P=\frac{x}{x-1}.\frac{y}{y-1}\)
1) Áp dụng BĐT bunhia, ta có
\(P^2\le3\left(6a+6b+6c\right)=18\Rightarrow P\le3\sqrt{2}\)
Dấu = xảy ra <=> a=b=c=1/3
Tìm GTLN của B= \(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ac+3a^2}\)
Biết a,b,c >=0 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)3
xin lỗi nha MÌNH sai đề ở chổ \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Cho a+b+c=3 và a,b>0 Tìm GTLN của \(\sqrt{3a^2+8ab+5b^2}+\sqrt{3b^2+8bc+5c^2}+\sqrt{3c^2+8ca+5a^2}\)
cho a,b,c>0, a+b+c=3 Tìm GTLN của
\(P=\sqrt{3a^2+4bc+9}+\sqrt{3b^2+4ca+9}+\sqrt{3c^2+4ab+9}\)
cho a,b,c>0 và \(a^2+b^2+c^2=12\). Tìm GTLN của biểu thức: \(P=\sqrt[3]{3a^2+b^2}+\sqrt[3]{3b^2+c^2}+\sqrt[3]{3c^2+a^2}\)
CMR: Với mọi a;b;c>0
\(\frac{2b+3c}{a+2b+3c}+\frac{2c+3a}{b+2c+3a}+\frac{2a+3b}{c+2a+3b}\ge\frac{5}{2}\)