Những câu hỏi liên quan
NP
Xem chi tiết
NL
23 tháng 6 2021 lúc 19:39

Bên dưới có giải thích chi tiết rồi đó em:

Cho a, b, c, d là các số tùy ý thỏa mãn a+b+c+d=1. Chứng minh a2+b2+c2+d2-2ab-2bc-2cd-2da\(\ge\)- \(\frac{1}{4}\) - Hoc24

Bình luận (0)
TT
Xem chi tiết
NL
4 tháng 2 2020 lúc 20:34

\(VT=a^2+b^2+c^2+d^2-2\left(a+c\right)\left(b+d\right)\)

\(VT\ge\frac{1}{4}\left(a+b+c+d\right)^2-\frac{1}{2}\left(a+b+c+d\right)^2=-\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=d=\frac{1}{4}\)

Bình luận (4)
 Khách vãng lai đã xóa
NP
Xem chi tiết
LK
Xem chi tiết
TT
15 tháng 11 2017 lúc 21:23

Cộng x với z

ra HĐT suy ra 

\(x+z=\left(a-b\right)^2+\left(c-d\right)^2+a^2+c^2\)

do a,b,c,d>0 nên x+z>0 vậy 1 trong 2 số có ít nhất 1 số dương 

tương tự tự làm nhé

Bình luận (0)
LK
15 tháng 11 2017 lúc 21:26

cảm ơn nhé

Bình luận (0)
H24
Xem chi tiết
H24
26 tháng 7 2021 lúc 14:22

Đây nhé! Tích giúp c nhaundefined

Bình luận (2)
LK
Xem chi tiết
TN
11 tháng 11 2017 lúc 20:30

cộng cả 4 số => dương => ít nhất 1 số dương 

Bình luận (0)
LK
11 tháng 11 2017 lúc 20:48

bạn nói rõ hơn đc ko

Bình luận (0)
H24
Xem chi tiết
LN
Xem chi tiết
LN
5 tháng 4 2023 lúc 22:17

mấy bạn trả lời nhanh nhanh giúp mik vs

 

Bình luận (0)
NC
Xem chi tiết
MH
17 tháng 3 2022 lúc 16:21

Câu 1:

Áp dụng BĐT Cô si cho 4 số dương, ta có:

\(a^4+b^4+c^4+d^4\ge4.^4\sqrt{\left(abcd\right)^4}=4abcd\)

Dấu "=" \(\Leftrightarrow a=b=c=d\)

Câu 2:

Gọi quãng đường AB là x km (x>0)

\(V_{tb}=\dfrac{S}{t}=\dfrac{x}{\dfrac{x}{\dfrac{2}{20}}+\dfrac{x}{\dfrac{2}{30}}}=\dfrac{x}{\dfrac{x}{40}+\dfrac{x}{60}}=\dfrac{x}{\dfrac{5x}{120}}=\dfrac{120x}{5x}=\dfrac{120}{5}=24\left(\text{km/h}\right)\)

Vậy ...

Bình luận (1)