Cho 3x+4y=5. Tìm giá trị nhỏ nhất cua biểu thức A=x2+16y2. Ai giúp em vs
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
MN GIÚP EM VỚI Ạ!! EM THANKS❤
a) Tìm số tự nhiên x lớn nhất để biểu thức:
A = (x-2022) . (x-2021) . (x-2020).....(x-2) . (x-1) có giá trị nhỏ nhất và giá trị nhỏ nhất đó bằng bao nhiêu ?
b) Tìm số tự nhiên x để biểu thức: B = (2018 + 2019 + 2020) : (x-2021) có giá trị lớn nhất và giá trị lớn nhất đó bằng bao nhiêu ?
a) *Xét x=0
==> Giá trị A=2022!(1)
*Xét 0<x≤2022
==> A=0(2)
*Xét x>2022
==> A≥2022!(3)
Từ (1),(2) và (3) ==> Amin=0 khi0<x≤2022
Mà để xmax ==> x=2022
Vậy ...
b)B=\(\dfrac{2018+2019+2020}{x-2021}\)=\(\dfrac{6057}{x-2021}\) (Điều kiện x-2021≠0 hay x≠2021)
Để Bmax ==> x-2021 là số tự nhiên nhỏ nhất
Mà x-2021≠0 =>x-2021=1==>x=2022
Khi đó Bmax=6057
Vậy...
a. Tìm x để biểu thức A=1000-|x+5| đạt giá trị lớn nhất
b. Tìm x để biểu thức B=|x-3|+5 đạt giá trị nhỏ nhất
a. A=1000-|x+5| < 1000
=> GTLN của A là 1000
<=> x + 5 = 0
<=> x = -5
b. B = |x-3| + 5 > 5
=> GTNN của B là 5
<=> x - 3 = 0
<=> x = 3
a) A = 1000 - |x + 5| \(\le\)1000
Vậy GTLN của A = 1000 khi
|x + 5| = 0 => x= -5
b)B = |x - 3| + 5 \(\ge\) 5
Vậy GTNN của B = 5 khi
|x - 3| = 0 => x = 3
Tìm giá trị nhỏ nhất của biểu thức:
2.|x-3| +(6-3y)4 - 2
Giúp vs!!!!!!
Có: \(\begin{cases}2.\left|x-3\right|\ge0\\\left(6-3y\right)^4\ge0\end{cases}\forall x;y\)
Do đó, \(2.\left|x-3\right|+\left(6-3y\right)^4-2\ge-2\)
Dấu "=" xảy ra khi \(\begin{cases}2.\left|x-3\right|=0\\\left(6-3y\right)^4=0\end{cases}\)\(\Rightarrow\begin{cases}\left|x-3\right|=0\\6-3y=0\end{cases}\)\(\Rightarrow\begin{cases}x-3=0\\6-3y=0\end{cases}\)
\(\Rightarrow\begin{cases}x=3\\3y=6\end{cases}\)\(\Rightarrow\begin{cases}x=3\\y=2\end{cases}\)
Vậy GTNN của 2.|x - 3| + (6 - 3y)4 - 2 là -2 khi x = 3; y = 2
Tìm giá tri nhỏ nhất của biểu thức M=x^2-2xy+4y^2+12y+22 giúp mình vs ạ mình cảm ơn ^_^
\(M=x^2-2xy+4y^2+12xy+22\)
\(M=\left(x^2-2xy+y^2\right)+\left(3y^2+12y+12\right)+10\)
\(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=-2\)
( Chỗ \(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\) bạn phân tích từng cái đã nhá, mình làm tắt )
Bài 1 : Tìm giá trị nhỏ nhất của các biểu thức sau :
a, A = x2 + 3x + 4 | d, D = 4x2+ 4x - 24 |
b, B = 2x2 - x + 1 | e, E = x2 + 6x - 11 |
c, C = 5x2 + 2x - 3 | g, G = \(\dfrac{1}{4}x^2+x-\dfrac{1}{3}\) |
MONG MỌI NGƯỜI GIÚP VỚI Ạ !!! EM CẦN GẤP !
a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)
c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)
\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)
d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)
\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)
e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)
\(minE=-20\Leftrightarrow x=-3\)
f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)
a: Ta có: \(A=x^2+3x+4\)
\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
d: Ta có: \(D=4x^2+4x-24\)
\(=4x^2+4x+1-25\)
\(=\left(2x+1\right)^2-25\ge-25\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
e: ta có: \(E=x^2+6x-11\)
\(=x^2+6x+9-20\)
\(=\left(x+3\right)^2-20\ge-20\forall x\)
Dấu '=' xảy ra khi x=-3
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau
\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)
GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)
Biểu thức ko tồn tại GTLN
Tìm giá trị nguyên của x để biểu thức M=2x-5/x có giá trị nhỏ nhất.
Ta có :
\(\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)
Để M có GTNN thì \(\frac{5}{x}\) phải có GTLN hay \(x>0\) và có GTNN
\(\Rightarrow\)\(x=1\)
\(\Rightarrow\)\(M=\frac{2x-5}{x}=\frac{2.1-5}{1}=\frac{-3}{1}=-3\)
Vậy \(M_{min}=-3\) khi \(x=1\)
a) Tìm các giá trị nguyên của x để phân số sau nhận các giá trị nguyên:
A= 6x +9/ 3x+2
b) Tìm giá trị nhỏ nhất của biểu thức :
A=| x | + | 8-x |
\(a)\) Ta có :
\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)
Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3x+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
Chúc bạn học tốt ~
\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau :
\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)
Áp dụng vào ta có :
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)
Trường hợp 2 :
\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại )
Vậy GTNN của \(A=8\) khi \(0\le x\le8\)
Chúc bạn học tốt ~
[...]5chia hết 3x+2
3x+2thuoc tập ước của 5
[...]
tìm giá trị nhỏ nhất của biểu thức:
A= I3,4-xI +5
Ta có : \(3,4-x\ge0\)
Vì \(\left(3,4-x\right)+5\ge5\)
Vậy giá trị nhỏ nhất là 5
Khi 3,4 - x = 0
x = 3,4
Để Amin thì /3,4-x/min
vì /3,4-x0/luôn lớn hơn hoặc bằng 0 vs mọi x nên /3,4-x/min=0
=>Amin=0+5=5
Ta có:\(\left|3,4-x\right|\ge0\)
\(\Rightarrow\left|3,4-x\right|+5\ge5\)
\(\Rightarrow MinA=5\) khi và chỉ khi \(x=3,4\)