Những câu hỏi liên quan
H24
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
UI
Xem chi tiết
NL
18 tháng 5 2021 lúc 18:10

Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại

Với pt sau:

Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm

Với \(x;y;z\ne0\)

Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3

Do đó:

\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)

Bình luận (0)
ND
Xem chi tiết
VH
23 tháng 5 2022 lúc 22:48

tham khảo

https://hoc24.vn/hoi-dap/tim-kiem?id=165107&q=1%2Fx%201%2F%28y%20z%29%3D1%2F3%20%201%2Fy%201%28z%20x%29%3D1%2F4%20%201%2Fz%201%2F%28x%20y%29%3D1%2F5%20%20gi%E1%BA%A3i%20h%E1%BB%87%20ph%C6%B0%C6%A1ng%20tr%C3%ACnh%20%E1%BA%A1%20m%E1%BB%8Di%20ng%C6%B0%E1%BB%9Di%20gi%E1%BA%A3i%20d%C3%B9m%20em%20v%E1%BB%9Bi%20%E1%BA%A1#:~:text=2020%20l%C3%BAc%2013%3A53-,%E2%87%94,2,-%E2%87%92y%3D23

Bình luận (0)
H24
Xem chi tiết
NC
2 tháng 2 2021 lúc 13:22

pt sau của bạn bị thiếu thì phải

 

Bình luận (0)
AP
Xem chi tiết
AH
7 tháng 1 2022 lúc 22:28

Lời giải:
$x,y,z>0$ thì $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ mới xác định.

Áp dụng BĐT AM-GM:

$(x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})\geq 3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9$

Dấu "=" xảy ra khi $x=y=z$. Thay vào pt $(2)$:

$x^3=x^2+x+2$

$\Leftrightarrow x^3-x^2-x-2=0$

$\Leftrightarrow x^2(x-2)+x(x-2)+(x-2)=0$

$\Leftrightarrow (x^2+x+1)(x-2)=0$
Dễ thấy $x^2+x+1>0$ với mọi $x>0$ nên $x-2=0$

$\Rightarrow x=2$
Vậy hpt có nghiệm $(x,y,z)=(2,2,2)$

Bình luận (0)
NN
Xem chi tiết
LH
25 tháng 5 2021 lúc 15:25

PT (1) \(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Nhận thấy VT\(\ge\)0 với mọi x,y,z

Dấu = xảy ra <=> x=y=z

Thay x=y=z vào pt (2) ta được:

\(3x^{2021}=3^{2022}\) \(\Leftrightarrow x^{2021}=3^{2021}\) \(\Leftrightarrow x=3\)

\(\Rightarrow x=y=z=3\)

Vậy (x;y;z)=(3;3;3)

Bình luận (0)
H24
Xem chi tiết
H24
6 tháng 4 2021 lúc 21:58

ĐKXĐ : \(2\le x,y,z\le4\)

Từ hệ phương trình ta suy ra được

\(\Sigma x+\Sigma\sqrt{x-2}+\Sigma\sqrt{4-x}=\Sigma x^2-5\Sigma x+33\\ \Leftrightarrow\Sigma\left(x^2-6x+9\right)+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\\ \Leftrightarrow\Sigma\left(x-3\right)^2+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\left(1\right)\)

Áp dụng bất đẳng thức \(\sqrt{A}+\sqrt{B}\le\sqrt{2\left(A+B\right)}\)

\(\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\Sigma\sqrt{2\left(x-2+4-x\right)}=\Sigma2=6\)

\(\Rightarrow\Sigma\left(x-3\right)^2+6\le6\Rightarrow\Sigma\left(x-3\right)^2\le0\)

Mà \(\Sigma\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2=\left(y-3\right)^2=\left(z-3\right)^2=0\\ \Leftrightarrow x=y=z=3\)

Thay vào ta thấy thỏa mãn -> x=y=z=3 là nghiệm hpt

Bình luận (0)