Tìm m để phương trình \(mx^2-\left(m+1\right)x+1=0\) có 2 nghiệm phân biệt
Tìm m để phương trình \(mx^2+2\left(m-1\right)x+m+3=0\)
a) có nghiệm kép; b) có hai nghiệm phân biệt;
c) có nghiệm; d) vô nghiệm.
\(mx^2+2\left(m-1\right)x+m+3=0\)(Đk:m≠0)
\(\Delta'=\left(m-1\right)^2-m\left(m+3\right)\)
\(\Delta'=m^2-2m+1-m^2-3m\)
\(\Delta'=1-5m\)
a,Để pt có nghiệm kép
Thì\(\Delta'=0\)
\(\Leftrightarrow1-5m=0\Rightarrow m=\dfrac{1}{5}\)
b, Để pt có 2 nghiệm phân biệt
Thì\(\Delta'>0\)
\(\Leftrightarrow1-5m>0\Rightarrow m< \dfrac{1}{5}\)
c,Để pt có nghiệm
Thì\(\Delta'\ge0\)
\(\Leftrightarrow1-5m\ge0\Rightarrow m\le\dfrac{1}{5}\)
d, Để pt vô nghiệm
Thì\(\Delta'< 0\)
\(\Leftrightarrow1-5m< 0\Rightarrow m>\dfrac{1}{5}\)
Lời giải:
$m=0$ thì pt trở thành $-2x+3=0\Leftrightarrow x=\frac{3}{2}$
$m\neq 0$ thì pt là pt bậc 2 ẩn $x$
$\Delta'=(m-1)^2-m(m+3)=1-5m$
PT có nghiệm kép $\Leftrightarrow \Delta'=1-5m=0\Leftrightarrow m=\frac{1}{5}$
PT có 2 nghiệm pb $\Leftrightarrow \Delta'=1-5m>0$
$\Leftrightarrow m< \frac{1}{5}$
Vậy pt có 2 nghiệm pb khi $m< \frac{1}{5}$ và $m\neq 0$
PT có nghiệm khi \(\left[\begin{matrix} m=0\\ \Delta'=1-5m\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m=0\\ m\leq \frac{1}{5}\end{matrix}\right.\Leftrightarrow m\leq \frac{1}{5}\)
PT vô nghiệm khi $\Delta'=1-5m< 0$
$\Leftrightarrow m> \frac{1}{5}$
Ta có: \(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot m\cdot\left(m+3\right)\)
\(=\left(2m-2\right)^2-4m\left(m+3\right)\)
\(=4m^2-8m+4-4m^2-12m\)
\(=-16m+4\)
a) Để phương trình có nghiệm kép thì \(\Delta=0\)
\(\Leftrightarrow-16m=-4\)
hay \(m=\dfrac{1}{4}\)
b) Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow-16m>-4\)
hay \(m< \dfrac{1}{4}\)
c) Để phương trình có nghiệm thì \(\Delta\ge0\)
\(\Leftrightarrow-16m\ge-4\)
hay \(m\le\dfrac{1}{4}\)
tìm m để phương trình :\(mx^2-2\left(m+1\right)x+2=0\left(1\right)\) có 2 nghiệm phân biệt x1 ,x2. khi đó hãy lập phương trình có các nghiệm như sau:
a) - 3x1 và - 2x2
b) x1 + x2 và x1.x2
PT có 2 nghiệm pb
`<=>Delta'>0`
`<=>(m+1)^2-2m>0`
`<=>m^2+2m+1-2m>0`
`<=>m^2+1>0` luôn đúng.
`a,\sqrt{\Delta}=\sqrt{m^2+1}`
`=>x_1=(2m+2+\sqrt{m^2+1})/(2m)`
`=>-3x_1=(-6m-6-3\sqrt{m^2+1})/(2m)`
`=>x_1=(2m+2-\sqrt{m^2+1})/(2m)`
`=>-2x_1=(\sqrt{m^2+1}-m-1)/m`
b,Áp dụng vi-ét
`=>x_1+x_2=(2m+2)/m,x_1.x_2=2/m`
PT có các nghiệm thì bạn phải ghi rõ đề chứ?
PT có 2 nghiệm pb
`<=>Delta>0`
`<=>4(m+1)^2-8m>0`
`<=>4m^2+8m+4-8m>0`
`<=>4m^2+4>0` luôn đúng.
`a,\sqrt{\Delta}=2\sqrt{m^2+1}`
`=>x_1=(2m+2+2\sqrt{m^2+1})/(2m)=(m+1+\sqrt{m^2+1})/,`
`=>-3x_1=(-3m-3-3\sqrt{m^2+1})/(m)`
`=>x_2=(2m+2-2\sqrt{m^2+1})/(2m)=(m+1-\sqrt{m^2+1})/m`
`=>-2x_2=(2\sqrt{m^2+1}-2m-2)/m`
b,Áp dụng vi-ét
`=>x_1+x_2=(2m+2)/m,x_1.x_2=2/m`
PT có các nghiệm thì bạn phải ghi rõ đề chứ?
Cho phương trình \(mx^2-\left(m^2+m+1\right)x+m+1=0\). Tìm điều kiện của m để phương trình có 2 nghiệm phân biệt khác -1.
xét m=0 thay vào ptr đã cho được x=-1 (loại)
xét m khác 0
ptr đã cho là ptr bậc 2 có 2 nghiệm phân biệt khi ∆ >0
<=> (m2+m+1)2-4m(m+1) >0
<=> (m2+m)2+2(m2+m) +1 -4(m2+m)>0
<=> (m2+m)2-2(m2+m)+1>0
<=> (m2+m-1)2>0
<=> m2+m-1 khác 0
<=> m khác \(\frac{-1\pm\sqrt{5}}{2}\)
Gọi x1, x2 là hai nghiệm phân biệt của ptr
=> \(\hept{\begin{cases}x1+x2=\frac{m^2+m+1}{m}\\x1.x2=\frac{m+1}{m}\end{cases}}\)(1)
Vì ptr đã cho có hai nghiệm khác -1 nên
{x1 # -1 và x2 #-1
=> (x1+1)(x2+1) # 0 và (x1+1) + (x2+1) # 0
=> x1.x2 +x1+x2+1 khác 0 và x1 +x2 +2 khác 0
thay (1) vào
Với \(m=0\) không thỏa mãn
Với \(m\ne0\) pt có 2 nghiệm pb khác -1 khi:
\(\left\{{}\begin{matrix}\Delta=\left(m^2+m+1\right)^2-4m\left(m+1\right)>0\\m+\left(m^2+m+1\right)+m+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+m\right)^2-2\left(m^2+m\right)+1>0\\m^2+3m+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+m-1\right)^2>0\\m^2+3m+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-1\ne0\\m^2+3m+2\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{-1\pm\sqrt{5}}{2}\\m\ne-2\\m\ne-1;m\ne0\end{matrix}\right.\)
Phương trình \(mx^2-\left(29m+1\right)x+m+3=0\)
Tìm m để pt có nghiệm , có nghiệm kép , có 2 nghiệm phân biệt, có nghiệm duy nhất .
Tìm giá trị nghuyên nhỏ nhát của m để phương trình \(mx^2-2\left(m+2\right)x+m+1=0\)có 2 nghiệm phân biệt là ?
cho phương trình: \(\left(m-1\right)x^2+2\left(m-1\right)x-m=0\)
a) Tìm m để phương trình có nghiệm kép. tìm nghiệm
b) tìm m để phương trình có 2 nghiệm phân biệt đều âm
a) PT có nghiệm kép nếu
\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)^2+m\left(m-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne1\\\left(m-1\right)\left(2m-1\right)=0\end{cases}\Leftrightarrow}m=\frac{1}{2}}\)
Vậy \(m=\frac{1}{2}\)thì pt có nghiệm kép
\(x_1=x_2=-\frac{b}{2a}=-\frac{2\left(m-1\right)}{2\left(m-1\right)}=-1\)
b) Để pt có nghiệm phân biệt đều âm thì
\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)\left(2m-1\right)>0\end{cases}}\)
\(\hept{\begin{cases}x_1\cdot x_2=-\frac{m}{m-1}>0\\x_1+x_2=\frac{2\left(m-1\right)}{m-1}< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}m>1\\m< \frac{1}{2}\end{cases}}\)và \(0< m< 1\)
Vậy 0<m<\(\frac{1}{2}\)
định gõ ấn f5 cái thì thấy bạn làm xong r :((
giải nhanh quá !
thế kết luận như thế nào vậy?
Cho phương trình: \(x^2+2\left(m+1\right)x-8=0\left(1\right)\). Tìm \(m\) để phương trình có 2 nghiệm phân biệt thỏa mãn: \(x_1^2=x_2\)
cái này tínhd đen ta r áp dụng hệ thức vi ét
cái biêủ thức đề bài biến đổi để kết hợp với pt tổng trong Viet ra hệ pt tìm ra x1 x2 ròi that vào pt tích trong viet
Tìm m để phương trình sau có ba nghiệm phân biệt.
a \(\left(x-1\right)\left(x^2-2mx+m^2-m+3\right)=0\)
b (x-3)(mx\(^2+3x+m\))=0
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x^2-2mx+m^2-m+3=0\left(1\right)\end{matrix}\right.\)
Pt có 3 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb khác 1
\(\Leftrightarrow\left\{{}\begin{matrix}1-2m+m^2-m+3\ne0\\\Delta'=m^2-\left(m^2-m+3\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m+4\ne0\left(\text{luôn đúng}\right)\\m>3\end{matrix}\right.\)
Vậy \(m>3\)
b.
Phương trình có 3 nghiệm pb khi và chỉ khi: \(mx^2+3x+m=0\) có 2 nghiệm pb khác 3
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\9m+9+m\ne0\\\Delta=9-4m^2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{9}{10}\\-\dfrac{3}{2}< m< \dfrac{3}{2}\end{matrix}\right.\)
a Tìm m để phương trình \(x^2-\left(2m+1\right)x+m^2+1=0\)
có hai nghiệm phân biệt trong đó nghiệm này
gấp đôi nghiệm kia
b Tìm m để phương trình \(x^2-2mx+m-3=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1+2x_2\) =1
c Tìm m để phương trình \(x^2-2mx+\left(m-1\right)^3=0\)
có hai nghiệm trong đó nghiệm này là bình
phương của nghiệm kia .
d Tìm m để phương trình \(2x^2-\left(m+1\right)x+m+3=0\) có hai nghiệm sao cho hiệu hai nghiệm bằng 1.
d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)
\(=m^2+2m+1-8m-24\)
\(=m^2-6m-23\)
\(=m^2-6m+9-32\)
\(=\left(m-3\right)^2-32\)
Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)
Ta có: \(x_1x_2=\dfrac{m+3}{2}\)
\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)
\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)