Những câu hỏi liên quan
H24
Xem chi tiết
AH
29 tháng 5 2023 lúc 19:29

Bạn xem lại xem đã biết biểu thức đúng chưa vậy?

Bình luận (0)
H24
Xem chi tiết
NT
29 tháng 5 2023 lúc 14:23

Sửa đề: x-4

\(A=\dfrac{x-2\sqrt{x}+x+4\sqrt{x}+4+2x+8}{x-4}=\dfrac{4x+2\sqrt{x}+12}{x-4}\)

Bình luận (0)
TA
Xem chi tiết
XO
27 tháng 9 2023 lúc 20:48

Có \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=1-\dfrac{10}{\sqrt{x}+5}\)

Dễ thấy \(\dfrac{10}{\sqrt{x}+5}>0\forall x\Rightarrow A=1-\dfrac{10}{\sqrt{x}+5}< 1\)

=> A < 2

Bình luận (0)
TA
Xem chi tiết
H24
17 tháng 6 2023 lúc 14:53

\(P=A.B=\dfrac{\sqrt{x}}{\sqrt{x}+1}.\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

Ta có : \(\left|P\right|-P=0\) \(\Leftrightarrow\left|P\right|=P\Leftrightarrow\left|\dfrac{\sqrt{x}}{\sqrt{x}-2}\right|=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(+TH_1:x\ge0\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\) (luôn đúng)

\(+TH_2:x< 0\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}=0\)

\(\Leftrightarrow-2.\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)=0\)

\(\Leftrightarrow x=0\)

Bình luận (0)
NT
Xem chi tiết
H24
15 tháng 4 2021 lúc 6:20

Câu 1:

a) ĐKXĐ: \(x>0;x\ne9\)

Với x=36 (thỏa mãn ĐKXĐ) thì A có giá trị :

\(A=\dfrac{\sqrt{36}+2}{1+\sqrt{36}}=\dfrac{6+2}{1+6}=\dfrac{8}{7}\)

 

b) Ta có: 

\(B=\left(\dfrac{2\sqrt{x}}{x-\sqrt{x}-6}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}=\dfrac{x+4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)

 

c) Ta có:

\(P=A\cdot B=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{\sqrt{x}+4}{\sqrt{x}+1}=1+\dfrac{3}{\sqrt{x}+1}\)

Vì x là số nguyên lớn hơn 0 nên 

\(x\ge1\Rightarrow\sqrt{x}\ge1\Rightarrow\sqrt{x}+1\ge2>0\Rightarrow P\le1+\dfrac{3}{2}=\dfrac{5}{2}\)

Dấu bằng xảy ra khi x=1;

 

 

Bình luận (0)
H24
15 tháng 4 2021 lúc 9:53

Gọi số sản phẩm dự định của xí nghiệp A và B lần lượt là x,y \(\left(x,y\in N;0< x,y< 720\right)\)

Vì tổng sản phẩm dự định là 720 nên ta có phương trình: \(x+y=720\left(1\right)\)

Vì thực tế , xí nghiệp A hoàn thành vượt mức 12% nên số sản phẩm xí nghiệp A thực tế là : \(112\%x=\dfrac{28}{25}x\)

Xí nghiệp B hoàn thành vượt mức 10% nên số sản phẩm xí nghiệp B thực tế là : \(110\%y=\dfrac{11}{10}y\)

Vì tổng số sản phẩm thực tế là 800 nên ta có phương trình: \(\dfrac{28}{25}x+\dfrac{11}{10}y=800\Leftrightarrow56x+55y=40000\left(2\right)\)

Từ (1)(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x+y=720\\56x+55y=40000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=720\\55\cdot720+x=40000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=400\\y=320\end{matrix}\right.\left(t.m\right)\)

Vậy số sản phẩm 2 xí nghiệp làm theo kế hoạch lần lượt là 400 và 320 sản phẩm

Bình luận (0)
H24
15 tháng 4 2021 lúc 10:19

1) Ta có phương trình:

\(3x^4-2x^2-40=0\Leftrightarrow\left(3x^4-12x^2\right)+\left(10x^2-40\right)=0\Leftrightarrow\left(x^2-4\right)\left(3x^2+10\right)=0\)

Mà \(3x^2+10\ge10>0\)

\(\Leftrightarrow x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

Vậy \(S=\left\{\pm2\right\}\) là tập nghiệm của phương trình

 

2)

Xét phương trình bậc 2 ẩn x :

\(x^2+\left(m-1\right)x-m^2-2=0\left(1\right)\)

Có hệ số: \(a=1;b=m-1;c=-m^2-2\)

\(\Rightarrow ac=-m^2-2\le-2< 0\)

Suy ra (1) có 2 nghiệm trái dấu \(x_1,x_2\) với mọi m thỏa mãn:

\(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=-m^2-2\end{matrix}\right.\left(2\right)\)

Đặt \(\left(\dfrac{x_1}{x_2}\right)^3=-a\left(a>0\right)\Rightarrow\left(\dfrac{x_2}{x_1}\right)^3=-\dfrac{1}{a}\) (do x1,x2 là 2 số trái dấu)

\(\Rightarrow T=-\left(a+\dfrac{1}{a}\right)\)

Áp dụng bất đẳng thức Cô-si cho 2 số dương \(a\) và \(\dfrac{1}{a}\) ta có:

\(a+\dfrac{1}{a}\ge2\sqrt{a\cdot\dfrac{1}{a}}=2\)

\(\Rightarrow T\le-2\)

Dấu "=" xảy ra \(\Leftrightarrow a=\dfrac{1}{a}\Leftrightarrow a=1\left(a>0\right)\Leftrightarrow x_1=-x_2\)

(2) trở thành: \(\left\{{}\begin{matrix}m-1=0\\x_1^2=m^2+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\x_1^2=3\left(t.m\right)\end{matrix}\right.\)

Vậy T đạt giá trị nhỏ nhất là -2 tại m=1

 

Bình luận (0)
H24
Xem chi tiết
H24
28 tháng 5 2023 lúc 7:53

a.

\(B=\dfrac{\sqrt{x}+1+\sqrt{x}\left(\sqrt{x}-1\right)+2\sqrt{x}}{1-x}=\dfrac{\sqrt{x}+1+x-\sqrt{x}+2\sqrt{x}}{1-x}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b.

\(P=\dfrac{B}{A}=\dfrac{x+3}{\sqrt{x}+1}:\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(x+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{x+3}{\sqrt{x}-1}=\dfrac{x-1+4}{\sqrt{x}-1}\)

\(=\sqrt{x}+1+\dfrac{4}{\sqrt{x}-1}\)\(=\sqrt{x}-1+\dfrac{4}{\sqrt{x}-1}+2\)

Theo BĐT AM - GM ta có: \(\sqrt{x}-1+\dfrac{4}{\sqrt{x}-1}\ge2\sqrt{\left(\sqrt{x}-1\right)\dfrac{4}{\sqrt{x}-1}}=4\)

\(\Rightarrow\dfrac{1}{P}\ge6\Rightarrow Min_{\dfrac{1}{P}}=6\)

Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x}-1\right)^2=4\Rightarrow x=9\) (loại trường hợp \(\sqrt{x}-1=-2\))

Vậy GTNN của biểu thức \(\dfrac{1}{P}=6\) khi x = 9.

Bình luận (1)
NK
Xem chi tiết
DH
11 tháng 7 2021 lúc 10:13

undefined

Bình luận (0)
NT
11 tháng 7 2021 lúc 10:13

Ta có: \(M=\dfrac{3\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+4}{\sqrt{x}+1}-\dfrac{9}{x-\sqrt{x}-2}\)

\(=\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3x-3-2x+8-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

Ta có: \(A-1=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-1\)

\(=\dfrac{\sqrt{x}+2-\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\dfrac{1}{\sqrt{x}+1}>0\forall x\) thỏa mãn ĐKXĐ

hay A>1

Bình luận (0)
H24
11 tháng 7 2021 lúc 10:16

\(M=\dfrac{3\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+4}{\sqrt{x}+1}-\dfrac{9}{x-\sqrt{x}-2}\\ =\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{3\left(x-1\right)-2\left(x-4\right)-9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{x-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}+1}=1+\dfrac{1}{\sqrt{x}+1}>1\)

Bình luận (0)
H24
Xem chi tiết
NT
19 tháng 11 2023 lúc 12:04

2: \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{\sqrt{x}+5-10}{\sqrt{x}+5}\)

\(=1-\dfrac{10}{\sqrt{x}+5}\)

\(\sqrt{x}+5>=5\forall x\)

=>\(\dfrac{10}{\sqrt{x}+5}< =\dfrac{10}{5}=2\forall x\)

=>\(-\dfrac{10}{\sqrt{x}+5}>=-2\forall x\)

=>\(-\dfrac{10}{\sqrt{x}+5}+1>=-2+1=-1\forall x\)

Dấu '=' xảy ra khi x=0

Vậy: \(A_{min}=-1\) khi x=0

Bình luận (0)
H24
Xem chi tiết
H24
27 tháng 9 2023 lúc 20:40

\(A=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\left(x\ge0;x\ne25\right)\)

Để \(A=\dfrac{2\sqrt{x}}{3}\) thì:

\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{2\sqrt{x}}{3}\)

\(\Leftrightarrow3\sqrt{x}-15=2x+10\sqrt{x}\)

\(\Leftrightarrow2x+10\sqrt{x}-3\sqrt{x}+15=0\)

\(\Leftrightarrow2x+7\sqrt{x}+15=0\) 

Mà \(2x+7\sqrt{x}+15>0\) (vì \(x\ge0\))

nên không tìm được giá trị nào của \(x\) thoả mãn \(A=\dfrac{2\sqrt{x}}{3}\)

#\(Toru\)

Bình luận (0)
NT
Xem chi tiết
H24
11 tháng 4 2021 lúc 0:11

Câu 1:

a) Khi x =16 (t.m ĐKXĐ) thì B có giá trị là:

\(B=\dfrac{16-6\cdot4}{4-1}=\dfrac{-8}{3}\)

b) Ta có:

\(A=\dfrac{25\sqrt{x}+6}{x-36}-\dfrac{\sqrt{x}-1}{6-\sqrt{x}}+\dfrac{2\sqrt{x}}{\sqrt{x}+6}=\dfrac{25\sqrt{x}+6}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-6\right)}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\dfrac{25\sqrt{x}+6+x+5\sqrt{x}-6+2x-12\sqrt{x}}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\dfrac{3x+18\sqrt{x}}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-6}\)

c) Ta có:

\(T=\sqrt{A\cdot B}=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3x\left(\sqrt{x}-6\right)}{\left(\sqrt{x}-6\right)\left(\sqrt{x}-1\right)}}=\sqrt{\dfrac{3\left(x-1\right)+3}{\sqrt{x}-1}}=\sqrt{3\left(\sqrt{x}+1\right)+\dfrac{3}{\sqrt{x}-1}}=\sqrt{3\left(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\right)+6}\overset{Cosi}{\ge}\sqrt{3\cdot2+6}=2\sqrt{3}\)

Dấu = xảy ra \(\Leftrightarrow\left(\sqrt{x}-1\right)^2=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(t.m\right)\)

 

Bình luận (0)
TK
11 tháng 4 2021 lúc 15:57

Gọi vận tốc dự định của hai bố con bạn Dũng là x(km/h)(x>0).Đổi: 10 phút =\(\dfrac{1}{6}\)(h)

thời gian dự định đi về quê là \(\dfrac{60}{x}\)(h)

vận tốc đi trên \(\dfrac{1}{3}\)quãng đường là đường xấu hai bố con bạn Dũng là \(x-10\)(km/h)

Thời gian thực tế đi về quê là \(\dfrac{\dfrac{1}{3}\cdot60}{x-10}+\dfrac{\dfrac{2}{3}\cdot60}{x}\)(h)

Vì hai bố con bạn Dũng đã về tới quê chậm mất 10 phút so với dự kiến

Nên ta có pt sau:

\(\left(\dfrac{\dfrac{1}{3}\cdot60}{x-10}+\dfrac{\dfrac{2}{3}\cdot60}{x}\right)-\dfrac{1}{6}=\dfrac{60}{x}\)

\(\dfrac{20}{x-10}+\dfrac{40}{x}-\dfrac{1}{6}=\dfrac{60}{x}\)

\(20x+40\left(x-10\right)-\dfrac{1}{6}x\left(x-10\right)=60\left(x-10\right)\)

\(-\dfrac{1}{6}x^2+\dfrac{5}{3}x+200=0\)

\(\left[{}\begin{matrix}x=40\left(n\right)\\x=-30\left(l\right)\end{matrix}\right.\)

Vậy ......

 

 

Bình luận (0)
H24
11 tháng 4 2021 lúc 20:14

Gọi x(km/h)x(km/h) là vận tốc dự định của hai bố con (x>10)(x>10)

Thời gian dự định là: 60x60x (giờ)

1313 quãng đường là: 13.60=20(km)13.60=20(km)

Vận tốc trên đoạn đường 20km20km là: x−10(km/h)x−10(km/h)

Thời gian đi trên đoạn đường 20km20km là: 20x−1020x-10 (giờ)

Đoạn đường đi với vận tốc dự định là: 60−20=40(km)60-20=40(km)

Thời gian đi trên đoạn đường 40km40km là: 40x40x (giờ)

Vì hai bố con về tới quê chậm 1010 phút =16=16 giờ nên ta có phương trình sau:

    60x+16=20x−10+40x    60x+16=20x-10+40x

⇔20x+16−20x−10=0⇔20x+16-20x-10=0

⇔20.6(x−10)+1.x(x−10)−20.6x=0⇔20.6(x-10)+1.x(x-10)-20.6x=0

⇔120x−1200+x2−10x−120x=0⇔120x-1200+x2-10x-120x=0

⇔x2−10x−1200=0⇔x2-10x-1200=0

⇔⇔[x=−30(loại)x=40(thỏa mãn)[x=−30(loại)x=40(thỏa mãn)

Vậy vận tốc dự định của hai bố con là 40km/h

Bình luận (0)