Những câu hỏi liên quan
BP
Xem chi tiết
NT
13 tháng 3 2022 lúc 17:58

Câu 20: Tam giác ABC vuông tại B suy ra:

   A.  AC2  = AB+ BC2 ­                                   B.  AC2  = AB- BC2

   C.  BC2  = AB+ AC2                                    D.  AB2  = BC+ AC2

Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?

   A.  Tại  B                                                      B.  Tại C

   C.  Tại A                                                       D.  Không phải là tam giác vuông

Câu 22: Cho ABC có  = 900 ; AB = 4,5 cm ; BC = 7,5 cm. Độ dài cạnh AC là:

   A.  6,5 cm                    B.  5,5 cm                     C.  6 cm                       D.   6,2 cm

Câu 23: Tam giác nào là tam giác vuông trong các tam giác có độ dài các cạnh là:

A.  3cm, 4dm, 5cm.         B.  5cm, 14cm, 12cm. 

C.  5cm, 5cm, 8cm.         D.  9cm, 15cm, 12cm.

Câu 24: Cho ABC có  AB = AC và  = 600, khi đó tam giác ABC là:

   A.  Tam giác vuông                                       B.   Tam giác cân

   C.  Tam giác đều                                           D.  Tam giác vuông cân

Câu 25: Nếu A là góc ở đáy của một tam giác cân thì:

A.  ∠A ≤ 900                                 B. ∠A > 900                            C. ∠A < 90                      D. ∠A = 900

Bình luận (0)
JN
Xem chi tiết
TH
9 tháng 3 2022 lúc 22:32

-Kẻ đường phân giác AD của △ABC.

-Có: \(\widehat{ADC}=\widehat{BAD}+\widehat{ABD}\) (\(\widehat{ADC}\) là góc ngoài của △ABD)

\(\widehat{BAC}=\widehat{BAD}+\widehat{CAD}\)

Mà \(\widehat{ABD}=\widehat{CAD}\left(=\dfrac{1}{2}\widehat{BAC}\right)\)

\(\Rightarrow\widehat{ADC}=\widehat{BAC}\)

-Xét △ADC và △BAC có:

\(\widehat{ADC}=\widehat{BAC}\left(cmt\right)\)

\(\widehat{ACB}\) là góc chung.

\(\Rightarrow\)△ADC∼△BAC (g-g).

\(\Rightarrow\dfrac{DC}{AC}=\dfrac{AC}{BC}\)(tỉ số đồng dạng)

-Xét △ABC có: AD là phân giác (gt)

\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (định lí đường phân giác của tam giác)

\(\Rightarrow\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}\)

\(\Rightarrow CD=\dfrac{BC.AC}{AB+AC}\)

Mà \(\dfrac{DC}{AC}=\dfrac{AC}{BC}\left(cmt\right)\)

\(\Rightarrow\dfrac{\dfrac{BC.AC}{AB+AC}}{AC}=\dfrac{AC}{BC}\)

\(\Rightarrow\dfrac{BC}{AB+AC}=\dfrac{AC}{BC}\)

\(\Rightarrow\left(AB+AC\right).AC=BC^2\)

\(\Rightarrow AC^2+AB.AC=BC^2\)

Bình luận (0)
PP
Xem chi tiết
LA
Xem chi tiết
H24
26 tháng 2 2022 lúc 12:20

A

Bình luận (0)
GJ
Xem chi tiết
HP
17 tháng 12 2020 lúc 12:41

a, \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{BC}^2\)

\(\Leftrightarrow AC^2+AB^2-2\overrightarrow{AB}.\overrightarrow{AC}=BC^2\)

\(\Leftrightarrow2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2-BC^2\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{AB^2+AC^2-BC^2}{2}=\dfrac{5^2+8^2-7^2}{2}=20\)

b, \(2\overrightarrow{CA}.\overrightarrow{CB}=CA^2+CB^2-BC^2=CA^2\)

\(\Rightarrow\overrightarrow{CA}.\overrightarrow{CB}=\dfrac{CA^2}{2}=\dfrac{8^2}{2}=32\)

Bình luận (0)
AH
17 tháng 12 2020 lúc 14:45

Lời giải:

a) 

\(\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}\)

\(\Rightarrow (\overrightarrow{AC}-\overrightarrow{AB})^2=\overrightarrow{BC}^2\Leftrightarrow AB^2+AC^2-2\overrightarrow{AC}.\overrightarrow{AB}=BC^2\)

\(\Leftrightarrow 2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2-BC^2\) (đpcm)

Ta có:

\(\overrightarrow{AB}.\overrightarrow{AC}=\frac{AB^2+AC^2-BC^2}{2}=\frac{5^2+8^2-7^2}{2}=20\)

\(\cos \angle A=\frac{\overrightarrow{AB}.\overrightarrow{AC}}{|\overrightarrow{AB}|.|\overrightarrow{AC}|}=\frac{20}{5.8}=\frac{1}{2}\)

\(\Rightarrow \angle A=60^0\)

b) 

Tương tự phần a, \(\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-AB^2}{2}=\frac{8^2+7^2-5^2}{2}=44\)

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 11 2018 lúc 11:19

a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm

b, 1. Chứng minh tương tự câu a)

2. Sử dụng định lí Pytago cho tam giác vuông AHM

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 2 2019 lúc 13:25

Đáp án: D

a sai vì nếu tam giác ABC thỏa mãn AB + AC2 = BC2 thì tam giác ABC vuông tại A không phải vuông tại B.

b, c, d đúng.

Bình luận (0)
PD
Xem chi tiết
LP
5 tháng 8 2023 lúc 7:03

a) Xét tam giác ACB và ADC, có \(\widehat{A}\) chung và \(\widehat{ACB}=\widehat{ADC}\left(gt\right)\), suy ra đpcm.

b) Từ câu a) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AC}{AD}\) \(\Rightarrow AC^2=AB.AD\)

Kẻ phân giác BE của tam giác ABC. Vì \(\widehat{B}=2\widehat{C}\)  nên \(\widehat{ABE}=\widehat{ADC}\) hay BE//CD. Mặt khác, \(\dfrac{EA}{EC}=\dfrac{BA}{BC}=\dfrac{4}{5}\) nên suy ra \(\dfrac{BA}{BD}=\dfrac{4}{5}\Leftrightarrow\dfrac{4}{BD}=\dfrac{4}{5}\Leftrightarrow BD=5\),  suy ra \(AD=AB+BD=4+5=9\).

\(\Rightarrow AC^2=AB.AD=4.9=36\) \(\Rightarrow AC=6\).

Vậy \(AC=6\)

Bình luận (0)
LP
5 tháng 8 2023 lúc 7:45

 Dạ thưa cô, cái này em áp dụng tính chất đường phân giác trong tam giác ạ. Cái này lớp 9 được dùng luôn không cần chứng minh ạ.

Bình luận (0)
NH

Lê Song Phương: \(\dfrac{EA}{EC}=\dfrac{BA}{BC}\) em lấy từ đâu ra vậy em?

Không có trong đề bài, vì vậy trước khi khẳng định mặt khác:

                             \(\dfrac{EA}{EC}\) = \(\dfrac{BA}{BC}\)

thì em cần chứng minh điều đó đã

Bình luận (0)
PD
Xem chi tiết