cho tam giác abc có góc a=2*góc b.cmr bc2=ac2+ab*ac
Câu 20: Tam giác ABC vuông tại B suy ra:
A. AC2 = AB2 + BC2 B. AC2 = AB2 - BC2
C. BC2 = AB2 + AC2 D. AB2 = BC2 + AC2
Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?
A. Tại B B. Tại C
C. Tại A D. Không phải là tam giác vuông
Câu 22: Cho ABC có = 900 ; AB = 4,5 cm ; BC = 7,5 cm. Độ dài cạnh AC là:
A. 6,5 cm B. 5,5 cm C. 6 cm D. 6,2 cm
Câu 23: Tam giác nào là tam giác vuông trong các tam giác có độ dài các cạnh là:
A. 3cm, 4dm, 5cm. B. 5cm, 14cm, 12cm.
C. 5cm, 5cm, 8cm. D. 9cm, 15cm, 12cm.
Câu 24: Cho ABC có AB = AC và = 600, khi đó tam giác ABC là:
A. Tam giác vuông B. Tam giác cân
C. Tam giác đều D. Tam giác vuông cân
Câu 25: Nếu A là góc ở đáy của một tam giác cân thì:
A. ∠A ≤ 900 B. ∠A > 900 C. ∠A < 900 D. ∠A = 900
Ai giúp mình với ạ!
Câu 20: Tam giác ABC vuông tại B suy ra:
A. AC2 = AB2 + BC2 B. AC2 = AB2 - BC2
C. BC2 = AB2 + AC2 D. AB2 = BC2 + AC2
Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?
A. Tại B B. Tại C
C. Tại A D. Không phải là tam giác vuông
Câu 22: Cho ABC có = 900 ; AB = 4,5 cm ; BC = 7,5 cm. Độ dài cạnh AC là:
A. 6,5 cm B. 5,5 cm C. 6 cm D. 6,2 cm
Câu 23: Tam giác nào là tam giác vuông trong các tam giác có độ dài các cạnh là:
A. 3cm, 4dm, 5cm. B. 5cm, 14cm, 12cm.
C. 5cm, 5cm, 8cm. D. 9cm, 15cm, 12cm.
Câu 24: Cho ABC có AB = AC và = 600, khi đó tam giác ABC là:
A. Tam giác vuông B. Tam giác cân
C. Tam giác đều D. Tam giác vuông cân
Câu 25: Nếu A là góc ở đáy của một tam giác cân thì:
A. ∠A ≤ 900 B. ∠A > 900 C. ∠A < 900 D. ∠A = 900
Cho tam giác ABC có góc A gấp đôi góc B. CMR: AC2 + AB.AC = BC2
-Kẻ đường phân giác AD của △ABC.
-Có: \(\widehat{ADC}=\widehat{BAD}+\widehat{ABD}\) (\(\widehat{ADC}\) là góc ngoài của △ABD)
\(\widehat{BAC}=\widehat{BAD}+\widehat{CAD}\)
Mà \(\widehat{ABD}=\widehat{CAD}\left(=\dfrac{1}{2}\widehat{BAC}\right)\)
\(\Rightarrow\widehat{ADC}=\widehat{BAC}\)
-Xét △ADC và △BAC có:
\(\widehat{ADC}=\widehat{BAC}\left(cmt\right)\)
\(\widehat{ACB}\) là góc chung.
\(\Rightarrow\)△ADC∼△BAC (g-g).
\(\Rightarrow\dfrac{DC}{AC}=\dfrac{AC}{BC}\)(tỉ số đồng dạng)
-Xét △ABC có: AD là phân giác (gt)
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (định lí đường phân giác của tam giác)
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}\)
\(\Rightarrow CD=\dfrac{BC.AC}{AB+AC}\)
Mà \(\dfrac{DC}{AC}=\dfrac{AC}{BC}\left(cmt\right)\)
\(\Rightarrow\dfrac{\dfrac{BC.AC}{AB+AC}}{AC}=\dfrac{AC}{BC}\)
\(\Rightarrow\dfrac{BC}{AB+AC}=\dfrac{AC}{BC}\)
\(\Rightarrow\left(AB+AC\right).AC=BC^2\)
\(\Rightarrow AC^2+AB.AC=BC^2\)
Vẽ tam giác ABC có các cạnh góc vuông AB =9cm, AC = 12cm và BC = 15cm - + Tính và so sánh BC2 và AB2 + AC2 ? - + Dùng thước đo góc để xác định số đo góc BAC ?
Tam giác ABC vuông tại C khi đó ta có
A. AB2= AC2 + BC2 B. CB2= AC2 + BA2
C. AB= AC+ BC D. CB= AC + BA
Cho tam giác ABC có AB=5, BC=7,AC=8
a) Từ đẳng thức \(\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}\) ,Chứng minh công thức \(2\overrightarrow{AB}.\overrightarrow{AC}=\) AB2+AC2-BC2
Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) , rồi suay ra giá trị của góc A
b) Tính \(\overrightarrow{CA}.\overrightarrow{CB}\)
a, \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{BC}^2\)
\(\Leftrightarrow AC^2+AB^2-2\overrightarrow{AB}.\overrightarrow{AC}=BC^2\)
\(\Leftrightarrow2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2-BC^2\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{AB^2+AC^2-BC^2}{2}=\dfrac{5^2+8^2-7^2}{2}=20\)
b, \(2\overrightarrow{CA}.\overrightarrow{CB}=CA^2+CB^2-BC^2=CA^2\)
\(\Rightarrow\overrightarrow{CA}.\overrightarrow{CB}=\dfrac{CA^2}{2}=\dfrac{8^2}{2}=32\)
Lời giải:
a)
\(\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}\)
\(\Rightarrow (\overrightarrow{AC}-\overrightarrow{AB})^2=\overrightarrow{BC}^2\Leftrightarrow AB^2+AC^2-2\overrightarrow{AC}.\overrightarrow{AB}=BC^2\)
\(\Leftrightarrow 2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2-BC^2\) (đpcm)
Ta có:
\(\overrightarrow{AB}.\overrightarrow{AC}=\frac{AB^2+AC^2-BC^2}{2}=\frac{5^2+8^2-7^2}{2}=20\)
\(\cos \angle A=\frac{\overrightarrow{AB}.\overrightarrow{AC}}{|\overrightarrow{AB}|.|\overrightarrow{AC}|}=\frac{20}{5.8}=\frac{1}{2}\)
\(\Rightarrow \angle A=60^0\)
b)
Tương tự phần a, \(\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-AB^2}{2}=\frac{8^2+7^2-5^2}{2}=44\)
Cho tam giác ABC có ba góc nhọn và AH là đường cao
a, Chứng minh: A B 2 + C H 2 = A C 2 + B H 2
b, Vẽ trung tuyến AM của tam giác ABC, chứng minh:
1. A B 2 + A C 2 = B C 2 2 + 2 A M 2
2. A C 2 - A B 2 = 2 B C . H M (với AC > AB)
a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm
b, 1. Chứng minh tương tự câu a)
2. Sử dụng định lí Pytago cho tam giác vuông AHM
Trong các mệnh đề sau
a. Nếu tam giác ABC thỏa mãn AB2 + AC2 = BC2 thì tam giác ABC vuông tại B.
b. Nếu một phương trình bậc hai có biệt thức không âm thì nó có nghiệm.
c. Tam giác ABC là tam giác đều khi và chỉ khi nó thỏa mãn đồng thời hai điều kiện AB = AC và góc A = 600.
d. Hình thang cân có một trục đối xứng.
Các mệnh đề đúng là:
A. a, c.
B. a, b, c.
C. b, c.
D. b, c, d.
Đáp án: D
a sai vì nếu tam giác ABC thỏa mãn AB2 + AC2 = BC2 thì tam giác ABC vuông tại A không phải vuông tại B.
b, c, d đúng.
cho tam giác ABC có góc B=2. góc C ,AB = 4cm ,BC=5cm , trên tia đối của tia BA lấy điểm D sao cho góc ACB = góc ADC
a) CM tam giác ACB đồng dạng tam giác ADC
b) CM AC2 = AD.AB từ đây tính AC
a) Xét tam giác ACB và ADC, có \(\widehat{A}\) chung và \(\widehat{ACB}=\widehat{ADC}\left(gt\right)\), suy ra đpcm.
b) Từ câu a) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AC}{AD}\) \(\Rightarrow AC^2=AB.AD\)
Kẻ phân giác BE của tam giác ABC. Vì \(\widehat{B}=2\widehat{C}\) nên \(\widehat{ABE}=\widehat{ADC}\) hay BE//CD. Mặt khác, \(\dfrac{EA}{EC}=\dfrac{BA}{BC}=\dfrac{4}{5}\) nên suy ra \(\dfrac{BA}{BD}=\dfrac{4}{5}\Leftrightarrow\dfrac{4}{BD}=\dfrac{4}{5}\Leftrightarrow BD=5\), suy ra \(AD=AB+BD=4+5=9\).
\(\Rightarrow AC^2=AB.AD=4.9=36\) \(\Rightarrow AC=6\).
Vậy \(AC=6\)
Dạ thưa cô, cái này em áp dụng tính chất đường phân giác trong tam giác ạ. Cái này lớp 9 được dùng luôn không cần chứng minh ạ.
Lê Song Phương: \(\dfrac{EA}{EC}=\dfrac{BA}{BC}\) em lấy từ đâu ra vậy em?
Không có trong đề bài, vì vậy trước khi khẳng định mặt khác:
\(\dfrac{EA}{EC}\) = \(\dfrac{BA}{BC}\)
thì em cần chứng minh điều đó đã
Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)