Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NV

cho tam giác abc có góc a=2*góc b.cmr bc2=ac2+ab*ac

LP
22 tháng 1 2022 lúc 19:43

Không vẽ hình vì sợ duyệt.

Kẻ đường phân giác AD của \(\Delta ABC\).

Dễ thấy \(\widehat{BAD}=\widehat{CAD}=\widehat{B}=\frac{\widehat{BAC}}{2}\)

Từ đó dễ dàng chứng minh \(\Delta ABD\)cân tại D \(\Rightarrow AD=BD\)

\(\Delta CAD\)và \(\Delta CBA\)có:

\(\widehat{C}\)chung và \(\widehat{CAD}=\widehat{B}\left(=\frac{\widehat{BAC}}{2}\right)\)\(\Rightarrow\Delta CAD~\Delta CBA\left(g.g\right)\)

\(\Rightarrow\frac{AC}{BC}=\frac{CD}{AC}=\frac{AD}{AB}\)\(\Rightarrow\hept{\begin{cases}AC^2=BC.CD\\AB.AC=BC.AD=BC.BD\left(AD=BD\right)\end{cases}}\)

\(\Rightarrow AC^2+AB.AC=BC.CD+BC.BD\)\(=BC\left(CD+BD\right)\)\(=BC.BC\)\(=BC^2\)

Ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
JN
Xem chi tiết
CN
Xem chi tiết
HC
Xem chi tiết
BN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
TN
Xem chi tiết
TT
Xem chi tiết